Оригинальная статья/Original Article

Коморбидный туберкулёз в условиях формирования локальной эпидемической ситуации

В. М. КОЛОМИЕЦ¹, Н. А. ПОЛЬШИКОВА¹, А. Ю. ПЕТРОВ², А. Л. КОВАЛЕНКО³, М. А. АЛЫМЕНКО⁴, *Е. В. ТАЛИКОВА⁵

- ¹ ФГБОУ ВО «Курский государственный медицинский университет» МЗ РФ, Курск, Россия
- ² ФГБОУ ВО «Санкт-Петербургский государственный университет», «Медицинский институт СПбГУ», *Санкт-Петербург, Россия*
- ³ ФГБУ «Научно-консультативный центр токсикологии им. С. Н. Голикова» ФМБА России, Санкт-Петербург, Россия
- ⁴ Московский финансово-промышленный университет «Синергия», Санкт-Петербург, Россия
- ⁵ ЧОУ ВО «Санкт-Петербургский медико-социальный институт», Санкт-Петербург, Россия

Резюме

Цель исследования — анализ эпидемиологических данных по туберкулёзу (ТБ) в Курской области с учётом изменяющейся социально-экономический ситуации в регионе и исследование возможностей применения ремаксола в схемах сопроводительной терапии гепатотоксических реакций пациентов с ТБ. В ходе анализа массива данных было отмечено, что динамика инфекционных процессов была схожей с другими регионами Российской Федерации: снижение на фоне COVID-19 и постепенный рост заболеваемости в поспандемийный период. У трети больных, включённых в исследование, были диагностированы коморбидные формы ТБ, отличавшиеся большей тяжестью течения заболевания и более низкой эффективностью терапии: у пациентов с моноинфекцией выздоровление (со снятием с учёта) было зарегистрировано у половины (49,8%), в то время как у больных с коморбидным вариантом течения этот показатель составил 35%. Вместе с тем клиническое выздоровление было диагностировано у 38,2% пациентов с моно- и 47% — с коморбидным туберкулёзом (p<0,5). Включение ремаксола (внутривенно капельно, 400 мл/сут, через день курс №5, далее — 1 раз в неделю №4) в схемы терапии гепатотоксических реакций на фоне основного курса лечения (ОКЛ) пациентов с ТБ как моно-, так и коморбидными формами способствовало более быстрому купированию отклонений клинико-лабораторных показателей и повышению эффективности лечения: 84,2% у больных с ТБ и 85,7% с коморбидной формой ТБ против 81,9 и 83,7% — у пациентов группы сравнения (p<0,05).

Ключевые слова: туберкулёз; заболеваемость; коморбидный туберкулёз; эпидемическая ситуация; эффективность терапии; ремаксол

Для цитирования: *Коломиец В. М., Польшикова Н. А., Петров А. Ю., Коваленко А. Л., Алыменко М. А., Таликова Е. В.* Коморбидный туберкулёз в условиях формирования локальной эпидемической ситуации. *Антибиотики и химиотер.* 2024; 69 (9–10): 40–46. doi: https://doi.org/10.37489/0235-2990-2024-69-9-10-40-46. EDN: AKIHVF.

Comorbid Tuberculosis in the Context of the Formation of a Local Epidemic Situation

VLADISLAV M. KOLOMIETS¹, NATALYA A. POLSHIKOVA¹, ANDREY YU. PETROV², ALEKSEY L. KOVALENKO³, MAKSIM A. ALYMENKO⁵, *EKATERINA V. TALIKOVA⁴

- ¹ Kursk State Medical University, Kursk, Russia
- ² Institute of Medicine of St Petersburg University, Saint Petersburg, Russia
- ³ Scientific Advisory Center of Toxicology Named after S.N. Golikov of the FMBA of Russia, Saint Petersburg, Russia
- ⁴ Moscow Financial and Industrial University «Synergy», Moscow, Russia
- ⁵ St. Petersburg Medical and Social Institute, Saint Petersburg, Russia

Abstract

The aim of the study was to analyze epidemiological data on tuberculosis in the Kursk region, taking into account the changing socio-economic situation in the region, as well as to study the possibilities of using remaxol in the regimens of accompanying therapy for hepatotoxic reactions in patients with tuberculosis. During the analysis of the data array, it was noted that the dynamics of infectious processes were similar to the other regions of the Russian Federation: a decrease against the background of COVID-19 and a gradual increase in morbidity in the post-pandemic period. A third of the patients included in the study were diagnosed with comorbid forms of tuberculosis, characterized by greater severity of the disease and lower effectiveness of therapy: recovery (with deregistration) was recorded in half (49.8%) of patients with monoinfection, while in patients with a comorbid course of the disease, this figure was 35%. At the same time, clinical recovery was diagnosed in 38.2% of patients with monoinfection and in 47% of patients with comorbid tuberculosis (P<0.5). The inclusion of remaxol (intravenous drip, 400 ml/day, every

*Correspondence to: E-mail: e_talikova@polysan.ru

^{*}Адрес для корреспонденции: E-mail: e_talikova@polysan.ru

other day — course No. 5, then 1 time per week No. 4) in the treatment regimens for hepatotoxic reactions during the main course of treatment in patients with tuberculosis, in both monoinfection and comorbid forms, contributed to a more rapid relief of deviations in clinical and laboratory parameters and an increase in the effectiveness of treatment: 84.2% in patients with tuberculosis and 85.7% with a comorbid form of tuberculosis versus 81.9% and 83.7% in patients in the comparison group ($P \le 0.05$).

Keywords: tuberculosis; morbidity; comorbid tuberculosis; epidemic situation; effectiveness of therapy; remaxol

For citation: *Kolomiets V. M., Polshikova N. A., Petrov A. Yu., Kovalenko A. L., Alymenko M. A., Talikova E. V.* Comorbid tuberculosis in the context of the formation of a local epidemic situation. *Antibiotiki i Khimioter = Antibiotics and Chemotherapy.* 2024; 69 (9–10): 40–46. doi: https://doi.org/10.37489/0235-2990-2024-69-9-10-40-46. EDN: AKIHVF.

В последние годы в Российской Федерации сохранялась тенденция к снижению заболеваемости и распространённости туберкулёза (ТБ) среди населения. При этом патоморфоз современного ТБ имеет ряд особенностей: во-первых, увеличение доли прогрессирующих тяжёлых поражений лёгких (казеозной пневмонии, генерализованного и диссеминированного ТБ) и внелёгочных форм (туберкулёзного менингоэнцефалита, поражения кишечника и др.). Во-вторых, регистрируются качественные изменения возбудителя — распространение штаммов с множественной лекарственной устойчивостью (МЛУ-ТБ), широкой (ШЛУ-ТБ) и сверхустойчивостью [1, 2].

На этом фоне отмечается стабильный прирост коморбидной патологии, в частности сочетание туберкулёза и ВИЧ-инфекции (ТБ/ВИЧ) и как доли в структуре заболеваемости социально-значимыми инфекционными заболеваниями (СЗИЗ), и в абсолютных значениях. Распространение данного варианта коморбидности в настоящее время признано закономерным из-за превалирования инфекций в одних и тех же социальных группах и особенностей иммунных механизмов заболеваний. Отмечено, что ТБ наиболее часто являлся причиной смерти у больных ВИЧ-инфекцией [3]. Кроме того, среди пациентов с впервые выявленным ТБ/ВИЧ регистрируется больше случаев с первичной МЛУ-ТБ и меньше — с сохранённой лекарственной чувствительностью возбудителя. Это также оказывает влияние на эффективность терапии: при ТБ/ВИЧ частота успешного лечения меньше в 1,5 раза для впервые выявленных и случаев рецидива заболевания, и в 1,9 раза для больных с устойчивостью возбудителя как минимум к рифампицину [4].

Важнейшим этапом в борьбе с ТБ явилась пандемия новой коронавирусной инфекции (НКИ, COVID-19). В Докладе Всемирной организации здравоохранения (ВОЗ) 2021 г. о глобальной борьбе с туберкулёзом подчёркивалось, что COVID-19 значительно повлиял на темпы борьбы с ТБ: впервые за более чем десять лет показатели смертности от данной инфекции увеличились. В связи с карантинными мерами в 2020 г. регистрировалось снижение численности людей, прошедших диагностику, лечение или профилактическую противотуберкулёзную терапию. Всё это происходило на фоне сокращения финансирова-

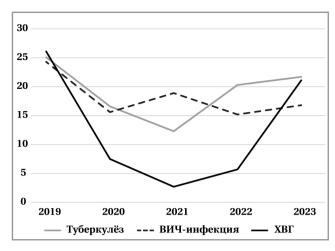
ния основных видов специализированной помощи в связи с переориентацией бюджетирования на борьбу с COVID-19. Таким образом, показатель снижения заболеваемости ТБ в этот период в настоящее время признан неблагоприятным, в том числе в прогностическом плане. На этом фоне отмечалось снижение регистрации случаев впервые выявленного ТБ и рецидивов заболевания на фоне роста доли пациентов с деструктивными изменениями лёгочной ткани, бактериовыделением и увеличение посмертной диагностики ТБ [5].

Изменения эпидемиологической и клинической картины ТБ и увеличение регистрации случаев коморбидности патологии требуют коррекции схем лечения: расширения спектра и включения новых препаратов этиотропной терапии с одновременным назначением от 4 до 9 препаратов и длительностью курсов 6-24 мес. При этом повышается риск развития побочных эффектов: рифампицин, изониазид, пиразинамид, фторхинолоны, бедаквилин и др. обладают потенциальным гепатотоксическим действием. Кроме того, у пациентов с коморбидным ТБ/ВИЧинфекцией схема, включающая противотуберкулёзные препараты (ПТП) и препараты антиретровирусной терапии (АРВТ), приводит, с одной стороны, к снижению смертности, а с другой гепатотоксическим реакциям и увеличению доли хронизации ТБ [6,7].

Таким образом, увеличение случаев развития гепатотоксических реакций у пациентов с ТБ и коморбидной патологии, в частности ТБ/ВИЧ, затрудняющих соблюдение режимов применения этиотропных препаратов и снижающих тем самым эффективность лечения, определяет целесообразность включения гепатопротекторов в схемы комплексной терапии этих пациентов. Одним из таких препаратов, успешно применяемых во фтизиатрии, является Ремаксол (ООО «НТФФ» ПО-ЛИСАН», Россия). Янтарная кислота, входящая в его состав, интенсифицирует клеточное дыхание, способствуя утилизацию кислорода тканями, повышает устойчивость мембран гепатоцитов к перекисному окислению. Метионин, являясь незаменимой аминокислотой, участвует в регуляции жирового и белкового обмена, препятствуя жировому перерождению гепатоцитов и обеспечивает липотропный эффект. Таким образом, пре-

парат способствует улучшению связывания непрямой фракции билирубина с глюкуроновой кислотой в гепатоците и экскреции прямого билирубина в желчь, ускоряя переход анаэробных процессов в аэробные, улучшая энергетическое обеспечение гепатоцитов, стимулируя синтез макроэргов, прежде всего АТФ. Клинически доказано, что десятидневный курс ремаксола в начале стандартного лечения инфильтративного туберкулёза лёгких способствует нормализации лабораторных показателей состояния печени, а также ускоренному регрессу деструкции в туберкулёзных инфильтратах с последующим сокращением потребности во фтизиохирургической помощи. Назначение препарата показано в случаях повышение активности печёночных ферментов и развитии печёночной недостаточности [8].

Цель исследования — анализ эпидемиологических данных по туберкулёзу в Курской области с учётом изменяющейся социально-экономический ситуации в регионе и исследование возможностей применения в схемах сопроводительной терапии коморбидного туберкулёза препарата ремаксол.


Материал и методы

Нами был проведён анализ данных формы № 030/у «Контрольная карта диспансерного наблюдения» пациентов, получивших лечение в ОБУЗ «Областной клинический противотуберкулёзный диспансер» г. Курска за 2003–2023 гг. В исследование были включены данные 5608 больных и переболевших туберкулёзом (4163(74,2%) мужчины и 1445 (25,7%) женшин).

Статистический анализ проводился с применением программы Statistica 10.0. Применялся ранговый коэффициент корреляции Спирмена, где значимым считалось значение $p \le 0,05$.

Результаты и обсуждение

Отмечено, что за последние пять лет (2019–2023 гг.) динамика заболеваемости основными СЗИЗ имела сходные черты с ситуацией в других регионах Российской Федерации: снижение на фоне

Динамика заболеваемости основными СЗИЗ за 2019–2023 гг. (на 100 тыс. населения). Dynamics of incidence of the main socially significant infectious diseases for 2019–2023 (per 100 thousand population).

СОVID-19 и постепенный рост заболеваемости в поспандемийный период [2, 4] (рисунок). Необходимо учитывать, что на формирование эпидемического профиля в Курской области оказали влияние не только пандемия СОVID-19 (2019–2020 гг.), но и то, что она является приграничной территорией, где с 2022 г. сложилась и периодически обостряется чрезвычайная ситуация.

При дальнейшем анализе массива данных была выявлена зависимость между клиническими формами ТБ лёгких и полом пациентов: у мужчин основными были диссеминированный (34,6%) и инфильтративный вариант (25%), а также фиброзно-кавернозная форма — (12,6%) случаев, у женщин на первом месте оказалась инфильтративная форма (31,5%), на втором — диссеминированная (25%), а на третьем — очаговый туберкулёз лёгких (16,2%), p>0,05 (табл. 1).

На начало пандемии 633 пациента умерли, а 308 выбыли (переехали из региона). Таким образом, ос-

Таблица 1. Клинические формы туберкулёза в зависимости от пола пациентов, включённых в исследование (абс, %).

Table 1. Clinical forms of tuberculosis depending on the gender of patients included in the study (abs, %). Клинические формы Пол Всего мужчины женщины Внелёгочные (ВНЛ) 55 (1,3%) 50 (3,4%) 105 Генерализованные формы 18 (0,4%) 11 (0,8%) 29 Диссеминированный (ДТЛ) 1442 (34,6%) 1803 361 (25%) Инфильтративный (ИТЛ) 1039 (25%) 455 (31,5%) 1494 Казеозная пневмония (КПН) 31 (0,7%) 10 (0,7%) 41 Кавернозный (КТЛ) 94 (2,3%) 33 (2,3%) 127 Очаговый (ОТЛ) 449 (10,8%) 233 (16,2%) 682 Поражения плевры (Плевр.) 35 (0,8%) 9 (0,6%) 44 Туберкулёма (ТТЛ) 420 (10,1%) 166 (11,5%) 586 Фиброзно-кавернозный (ФКТЛ) 525 (12,6%) 92 (6,3%) 617 Цирротический (ЦТЛ) 55 (1,3%) 25 (1,7%) 80 Итог 4163 1445 5608

Таблица 2. Исходы основного курса лечения (ОКЛ) пациентов с туберкулёзом (моно- и коморбидным вариантами)

Table 2. Outcomes of the main course of treatment of patients with tuberculosis (mono- and comorbid variants)

Патология	Исход ОКЛ			Всего
	эффективен		не эффективен	
	выздоровление	клиническое	больные	
	(снятые с учёта)	излечение		
ТБ	1645	1260	396	3301
Коморбидность: ТБ +				
Хроническая алкогольная интоксикация (ХАИ)) 43	57	30	130
Болезни органов дыхания	124	129	56	309
Заболевания ССС	61	99	30	190
ВИЧ-инфекция	21	66	17	104
Вирусные гепатиты	31	41	23	95
Онкопатология	11	9	9	29
Психические заболевания	34	48	10	92
Сахарный диабет	41	49	22	112
Другие заболевания	112	144	49	305
Итог	2123	1902	642	4667

новной анализируемый резервуар туберкулёзной инфекции составили 4667 больных и переболевших ТБ. Анализ эффективности результатов терапии выявил, что основной курс лечения туберкулёза (ОКЛ) был более эффективен у пациентов с моноинфекцией ТБ: 88% против 82% — с коморбидным туберкулёзом (p > 0.05). Отмечены различия и в характере эффективности: у пациентов с ТБ выздоровление (со снятием с учёта) было зарегистрировано у половины (49,8%), в то время как у больных с коморбидным ТБ этот показатель составил 35%. Вместе с тем клиническое выздоровление было диагностировано у 38,2% пациентов с ТБ и 47% — с коморбидным ТБ (p<0,5). Таким образом полученные результаты подтверждают данные литературы о более тяжёлом течении коморбидных форм ТБ [3].

При анализе сопутствующей патологии было отмечено, что коморбидность присутствовала у 1366 (30,5%) больных (табл. 2). Необходимо отметить, что у большинства (82%) больных коморбидным туберкулёзом ОКЛ был эффективен. Наименее эффективным он был у пациентов с сочетанием: ТБ + онкопатологией (31% пациентов), ТБ + вирусные гепатиты (24,2% больных) и ТБ + хроническая алкогольная интоксикация (ХАИ) (23,1% обследованных), p>0,05.

Развитие гепатотоксических реакций (повышение уровня общего билирубина и трансаминаз, ГГТП, появление дискомфорта и болей в левом подреберье) на фоне ОКЛ был отмечен у 316 пациентов: 228 (6,9%) больных с моноинфекцией ТБ и 88 (6,4%) — с коморбидным ТБ. Необходимо отметить, что у больных с коморбидным ТБ признаки лекарственного поражения печени появились уже в начале 4-го месяца. ОКЛ и имели большую выраженность и длительность купирования. Всем больным была назначена гепатопротекторная терапия: у 71 (основная, I группа) в схему терапии был включён ремаксол: внутривенно капельно,

400 мл/сут, через день курс №5, далее — 1 раз в неделю №4. У 245 (группа II, сравнения) — согласно регламентирующим документам. Кроме того, пациенты были разделены на подгруппы в зависимости от патологии: IA (n=57) и IIA (n=171) — больные ТБ и IB (*n*=14), и IIB (*n*=74) — с коморбидным ТБ. Со всеми больными была проведена разъяснительная беседа, все подписали информированное согласие. Эффективность оценивали по скорости купирования клинико-лабораторных данных и возможности сохранения полного объёма этиотропной терапии. Сравнение схем терапии выявило большую эффективность ремаксола: 84,2% у больных с ТБ и 85,7% с коморбидной формой ТБ против 81,9 и 83,7% — у пациентов группы сравнения ($p \le 0.05$), (табл. 3). На введение ремаксола нежелательных реакций выявлено не было, все больные получили лечение в полном объёме.

Таким образом, включение ремаксола в схемы терапии сопровождения ОКЛ пациентов с ТБ как моно-, так и коморбидными формами с гепатотоксическими реакциями способствовало более быстрому купированию отклонений клинико-лабораторных показателей и тем самым — сохранению проводимой этиотропной терапии.

Всё большее внимание в настоящее время уделяется изучению взаимосвязи генетического профиля пациентов и эффективности используемых лекарственных препаратов, в частности, изучению генов детоксикации ксенобиотиков (ДК). К ксено-

Таблица 3. Результаты схем комплексной терапии (абс, %)

Table 3. Results of complex therapy regimens (abs, %)

Группы		Результат терапии			
		эффективна	не эффективна		
I (n=71)	IA (<i>n</i> =57)	48 (84,2%)	9 (15,8%)		
	IB (n=14)	12 (87,5%)	2(14,3%)		
II (n=245)	IIA (<i>n</i> =171)	140 (81,9%)	31 (18,1%)		
	IIB (<i>n</i> =74)	62(83,7%)	12 (16,2%)		

биотикам относят различные сторонние для организма вещества: лекарственные препараты, пищевые добавки, никотин, алкоголь и др. Ферменты ДК обеспечивают общую устойчивость организма к факторам внешней и внутренней среды. Нарушение баланса в метаболических путях за счёт изменений активности ферментов, обусловленное генетическим полиморфизмом, может вызывать нарушение окислительно-восстановительного гомеостаза. Установлено, что система ДК включает в себя три фазы. В первую фазу происходит идентификация и активация ксенобиотических субстратов с участием системы цитохрома Р450, в результате чего образуются опасные для клеток активные промежуточные метаболиты. Во время второй фазы, благодаря участию глутатионтрансфераз, происходит нейтрализация опасных активных метаболитов с образованием водорастворимых нетоксических соединений, которые выводятся во время третьей фазы через органы выделения [9]. Для эффективной ДК необходимо равновесие между ферментами первой и второй фаз. Наиболее полно ферменты детоксикации представлены в печени, но для большинства из них показана экспрессия и в других органах, в том числе в лёгких и бронхах, например, глутатион-S-трансферазах и цитохромов Р450. Установлено, что наличие полиморфизмов генов II фазы ДК предопределяет повышенный риск инфекционных заболеваний и выраженность эффекта от антибактериальной терапии [10, 11].

В связи с этим нами был проведён анализ генетического профиля у 316 пациентов (228 больных с моноинфекцией ТБ и 88 — с коморбидным ТБ). Все обследованные имели гепатоксические реакции различной выраженности и получили сопроводительную терапию: у 71 (основная, І группа) в схему терапии был включён ремаксол: внутривенно капельно, 400 мл/сут, через день курс № 5, далее — 1 раз в неделю №4. У 245 (группа II, сравнения), согласно регламентирующим документам.

Были исследованы гены цитохрома СҮР2Е1, Nацетил-трансферазы 2 (NAT2), ген *t*-глутатион трансферазы (GSTT1) и ген т-глутатион транферазы (GSTM1). Геномную ДНК выделяли стандартным методом фенольно-хлороформной экстракции с последующей преципитацией ДНК этанолом. Генотипирование полиморфных вариантов проведено на генетическом анализаторе MassARRAY-4 (Agena Bioscience, США) в НИИ генетической молекулярной эпидемиологии Курского государственного медицинского университета (КГМУ). Контроль качества генотипирования, выполненного на 5% случайно отобранных образцов ДНК, показал 100% воспроизводимость первичных результатов генотипирования.

Анализ полученных данных не выявил существенных различий генетического профиля ни в зависимости от схем терапии (табл. 4) и ни при

Таблица 4. Эффективность ОКЛ при включении ремаксола у впервые выявленных больных туберкулёзом в зависимости от генотипов (абс, %) Table 4. Efficiency of the main course of treatment with the inclusion of remaxol in newly diagnosed patients with tuberculosis depending on genotypes (abs, %)

			т лечения	Всего			
		эффективен	не эффективен				
CYP2E1							
I, n=245	aa	189	37	226			
	AA	13	6	19			
II, <i>n</i> =71	aa	58	9	67			
	AA	2	2	4			
	Итог	262	54	316			
		NAT2					
I, <i>n</i> =230	aa	101	18	119			
	AA	90	21	111			
II, <i>n</i> =65	aa	23	8	31			
	AA	29	5	34			
	Итог	243	52	295			
		GSTT1					
I, n=245	aa	180	40	220			
	AA	22	3	25			
II, <i>n</i> =71	aa	53	10	63			
	AA	7	1	8			
	Итог	262	54	316			
		GSTM1	[
I, <i>n</i> =245	aa	90	19	110			
	AA	112	24	136			
II, <i>n</i> =71	aa	31	2	33			
	AA	29	9	38			
	Итог	262	54	316			

Примечание. АА — доминантный ген; аа — рецессивный ген.

Note: AA — dominant gene; aa — recessive gene.

сравнении генетического профиля и эффективности — преобладал рецессивный вариант генов. Наряду с этим отмечена тенденция по соотношению рецессивных и доминантных вариантов по гену N-ацетил-трансферазы 2 (NAT2): у пациентов с эффективным вариантом терапии оно составило 51 и 49%, не эффективным — по 50%, соответственно (p>0,05). Известно, что ген NAT-2 кодирует аминокислотную последовательность цитозольного фермента N-ацетил-трансферазы II типа, который вырабатывается в печени, кишечнике и некоторых других органах и участвует во второй фазе метаболизма ксенобиотиков — детоксикации посредством ацетилирования — присоединения ацетилгруппы. Субстратами для N-ацетил-трансферазы 2 являются ароматические амины и гидрозины, к которым относятся многие канцерогены, а также некоторые лекарственные препараты.

По гену m-глутатион транферазы (GSTM1) эти показатели составили: при эффективном результате терапии 46 и 54%, при не эффективном — 39 и 61%, соответственно (*p*>0,05). Данный ген кодирует белок глутатион S-трансферазу. Генетическая вариабельность генов

глутатион S-трансфераз может обуславливать восприимчивость организма к канцерогенам и токсинам, а также влиять на токсичность и эффективность применения некоторых лекарственных средств. В связи с этим выявленная тенденция может быть связана с развитием гепатотоксических реакций на ОКЛ, что и наблюдалось у обследованных пациентов. Полученные результаты требуют дальнейших исследований.

Заключение

В ходе анализа массива данных по заболеваемости туберкулёзом и другими социально-значимыми инфекционными заболеваниями в Курской области было отмечено, что динамика инфекционных процессов была схожей с другими регионами Российской Федерации: снижение на фоне COVID-19 и постепенный рост заболеваемости в поспандемийный период.

У трети больных, включённых в исследование, были диагностированы коморбидные формы туберкулёза, отличавшиеся большей тяжестью течения заболевания и более низкой эффективностью терапии: у пациентов с ТБ выздоровление (со снятием с учёта) было зарегистрировано у половины (49,8%), в то время как у больных с коморбидным ТБ этот показатель составил 35%.

Литература/References

- О стратегии развития здравоохранения Российской Федерации на период до 2025 г.: Указ Президента Российской Федерации от 06.06.2019 г. № 254. М.: 12. [On the strategy for the development of healthcare in the Russian Federation until 2025: Decree of the President of the Russian Federation of 06.06.2019 No. 254. Moscow. 12. (in Russian)]
- Нечаева О. Б. Состояние и перспективы противотуберкулёзной службы России в период COVID-19. Туберкулёз и болезни лёгких. 2020; 98 (12): 7–19. doi: ttps://doi.org/10.21292/2075-1230-2020-98-12-7-19. [Nechaeva O. B. The state and prospects of the anti-tuberculosis service in Russia during COVID-19 Tuberkulez i Bolezni Legkikh. 2020; 98(12): 7–19]. doi: ttps://doi.org/10.21292/2075-1230-2020-98-12-7-19. (in Russian)]
- Азовцева О. В., Грицюк А. В., Гемаева М. Д., Карпов А. В., Архипов Г. С. ВИЧ-инфекция и туберкулёз как наиболее сложный вариант коморбидности. Вестник Новгородского государственного университета. 2020; 117 (1): 79–84. doi: https://doi.org/10.34680/2076-8052.2020.1(117).79-84. [Azovtseva O. V., Gritsyuk A. V., Gemaeva M. D., Karpov A. V., Arkhipov G. S. HIV infection and tuberculosis as the most complex variant of comorbidity Vestnik Novgorodskogo Gosudarstvennogo Universiteta. 2020; 117 (1): 79–84. doi: https://doi.org/10.34680/2076-8052.2020.1(117).79-84. (in Russian)]
- Яблонский П. К., Старишнова А. А., Назаренко М. М., Беляева Е. Н., Чужов А. Л., Алексеев Д. Ю., Павлова М. В. Эффективность лечения туберкулёза с лекарственной устойчивостью возбудителя у больных с различным коморбидным статусом. Медицинский альянс. 2022; 10 (1): 6–15. doi: https://doi.org/10.36422/23076348-2022-10-1-6-15. [Yablonskij P. K., Starshinova A. A., Nazarenko M. M., Belyaeva E. N., Chuzhov A. L., Alekseev D. Yu., Pavlova M. V. Efficiency of treatment of drugresistant tuberculosis in patients with different comorbid status Meditsinskij Al'yans. 2022; 10 (1): 6–15. doi: https://doi.org/10.36422/23076348-2022-10-1-6-15. (in Russian)]
- Савинцева Е. В., Исаева П. В., Низамова Г. Ф. Туберкулёз и COVID-19: медицинские и социальные аспекты Туберкулёз и болезни лёгких. 2022; 100 (3): 13–17. doi: https://doi.org/10.36422/23076348-2022-10-1-6-15. [Savintseva E. V., Isaeva P. V., Nizamova G. F. Tuberculosis and COVID-19: medical and social aspects Tuberkulyoz i Bolezni Lyogkikh. 2022; 100 (3): 13–17. doi: https://doi.org/10.36422/23076348-2022-10-1-6-15. (in Russian)].
- 6. Васильева И. А., Самойлова А. Г., Зимина В. Н., Ловачева О. В., Абрамченко А. В. Химиотерапия туберкулёза в России история

Вместе с тем клиническое выздоровление было диагностировано у 38,2% пациентов с ТБ и 47% — с коморбидным ТБ (p<0,5).

Включение ремаксола (внутривенно капельно, 400 мл/сут, через день курс №5, далее — 1 раз в неделю №4) в схемы терапии гепатотоксических реакций на фоне ОКЛ пациентов с ТБ как моно-, так и коморбидными формами способствовало более быстрому купированию отклонений клинико-лабораторных показателей и повышению эффективности лечения: 84,2% у больных с ТБ и 85,7% с коморбидной формой ТБ против 81,9% и 83,7% — у пациентов группы сравнения (p<0,05).

Выявленная тенденция неоднородности генов N-ацетил-трансферазы 2 (NAT2) и m-глутатион транферазы (GSTM1) у пациентов с туберкулёзом и гепатотоксическими реакциями требует дальнейших расширенных исследований.

Дополнительная информация

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Участие авторов. Разработка модели, анализ и интерпретация результатов — *Коломиец В. М., Польшикова Н. А., Таликова Е. В.* Написание текста, редактирование — *Коломиец В. М., Петров А. Ю., Коваленко А. Л., Таликова Е. В.*

- продолжается. Туберкулёз и болезни лёгких. 2023; 101 (2): 8–12. doi: http://doi.org/10.58838/2075–1230-2023-101-2-8-12. [Vasil'eva I. A., Samojlova A. G., Zimina V. N., Lovacheva O. V., Abramchenko A. V. Tuberculosis chemotherapy in Russia the story continues. Tuberkulyoz i Bolezni Lyogkikh. 2023; 101 (2): 8–12. doi: http://doi.org/10.58838/2075–1230-2023-101-2-8-12. (in Russian)].
- Цыбикова Э. Б. Туберкулёз, сочетанный с ВИЧ-инфекцией, в России в период до и во время пандемии COVID-19. ВИЧ-инфекция и иммуносупрессии. 2022; 14 (4): 29–35. doi: http://dx.doi.org/10.22328/2077-9828-2022-14-4-29-35. [Tsybikova Eh.B. Tuberculosis combined with HIV infection in Russia before and during the COVID-19 pandemic. VICH-infektsiya i immunosupressii. 2022; 14 (4): 29–35. doi: http://dx.doi.org/10.22328/2077-9828-2022-14-4-29-35. (in Russian)]
- Мазина Н. К., Мазин П. В. Метааналитический подход к оценке клинической эффективности инфузионного сукцинатсодержащего препарата Ремаксол при патологии печени разного генеза. Антибиотики и химиотер. 2015; 60 (11–12): 43–49. [Mazina N. K., Mazin P. V. Meta-analytical approach to assessing the clinical efficacy of the infusion succinate-containing drug Remaxol in liver pathology of various genesis. Antibiot Khimioter = Antibiotics and Chemotherapy. 2015; 60 (11–12): 43–49. (in Russian)]
- Шуматова Т. А., Коваленко Д. В. Роль генов второй фазы детоксикации ксенобиотиков в патогенезе мультифакториальных заболеваний. Тихоокеанский медицинский журнал. 2021; 4: 6–20. doi: http://dx.doi.org/10.34215/1609-1175-2021-4-16-20. [Shumatova T. A., Kovalenko D. V. The role of genes of the second phase of xenobiotic detoxification in the pathogenesis of multifactorial diseases Tikhookeanskij Meditsinskij Zhurnal. 2021; 4:16–20. doi: http://dx.doi.org/10.34215/1609-1175-2021-4-16-20.
- Сычев Д. А. Генетические особенности пациента могут влиять на профиль эффективности и безопасности лекарственного препарата. Безопасность и риск фармакотерапии. 2024; 12 (2): 127–131. doi: https://doi.org/10.30895/2312-7821-2024-12-2-127-131. [Sychev D. A. A patient's genetic characteristics may influence the efficacy and safety profile of a drug. Bezopasnost' i Risk Farmakoterapii. 2024;12 (2): 127–131. doi: https://doi.org/10.30895/2312-7821-2024-12-2-127-131. (in Russian)
- Алыменко М. А., Валиев Р. Ш., Валиев Н. Р., Полоников А. В., Трагира И. Н., Шеенков Н. В. Ассоциация полиморфных вариантов генов ферментов биотрансформации ксенобиотиков и цитокинов с деструкцией лёгочной ткани у больных туберкулёзом. Туберкулёз и болезни лёгких. 2022; 100 (8): 25–30. doi: http://doi.org/10.21292/2075-1230-2022-100-8-

25-30. [*Alymenko M. A., Valiev R. Sh., Valiev N. R., Polonikov A. V., Tragira I. N., Sheenkov N. V.* Association of polymorphic variants of genes encoding enzymes for xenobiotic and cytokine biotransformation with lung tissue destruction in patients with tuberculosis Tuberkulyoz i Bolezni Lyogkikh.

2022; 100 (8): 25–30. doi: http://doi.org/10.21292/2075-1230-2022-100-8-25-30. (in Russian)]

Поступила / Received 01.01.2024 Принята в печать / Accepted 10.10.2024

Информация об авторах

Коломиец Владислав Михайлович — д. м. н., профессор кафедры клинической иммунологии, аллергологии и фтизиопульмонологии ФГБОУ ВО КГМУ Минздрава России, Курск, Россия. ORCID ID: 0009-0002-2042-4460. Scopus Author ID: 594235

Польшикова Наталья Александровна — сотрудник кафедры инфекционных болезней и эпидемиологии ФГБОУ ВО КГМУ Минздрава России, Курск, Россия. SPIN-код: 3857-6888, AuthorID: 1143730

Петров Андрей Юрьевич — к. ф. н., лауреат премии Правительства РФ в области науки и техники, доцент кафедры фармакологии Медицинского института СПбГУ, Санкт-Петербург, Россия. ORCID ID: 0000-0001-6204-0145, SCIN 1946-4792

Коваленко Алексей Леонидович — д. б. н., к. х. н., лауреат премии правительства РФ в области науки и техники, ведущий научный сотрудник химико-аналитического отдела ФГБУ НКЦТ им. С. Н. Голикова ФМБА России, Санкт-Петербург, Россия. ORCID ID: 0000-0003-3695-2671, SPIN-код: 7216-8364

Алыменко Максим Алексеевич — к. м. н. доцент кафедры общей биологии и фармации, медицинский факультет, Московский финансово-промышленный университет «Синергия», Москва, Россия. ORCID ID: 0000-0001-7341-3648

Таликова Екатерина Владимировна — к. м. н., доцент кафедры морфологии, патологии и судебной медицины ЧОУ ВО «Санкт-Петербургский медико-социальный институт», Санкт-Петербург, Россия. ORCID ID: 0000-0001-6509-9425. SCIN-1129-8267

About the authors

Vladislav M. Kolomiets — D. Sc. in Medicine, Professor of the Department of Clinical Immunology, Allergology, and Phthisiopulmonology, Kursk State Medical University, Kursk, Russia. ORCID ID: 0009-0002-2042-4460, Scopus Author ID: 594235

Natalya A. Polshikova — Department of Infectious Diseases and Epidemiology, Kursk State Medical University, Kursk, Russia. SPIN-code: 3857-6888, AuthorID: 1143730

Andrey Yu. Petrov — Ph. D. in Pharmaceutical Sciences, Laureate of the Russian Federation Government Prize in Science and Technology, Associate Professor of the Department of Pharmacology, Institute of Medicine of St Petersburg University, Saint Petersburg, Russia. ORCID ID: 0000-0001-6204-0145, SCIN 1946-4792

Aleksey L. Kovalenko — D. Sc. in Biology, Ph.D. in Chemistry, Laureate of the Russian Federation Government Prize in Science and Technology, Leading Researcher of the Chemical-Analytical Department, Scientific Advisory Center of Toxicology Named after S. N. Golikov of the Federal Medical-Biological Agency of Russia, Saint Petersburg, Russia. ORCID ID: 0000-0003-3695-2671, SPIN-code: 7216-8364

Maksim A. Alymenko—Ph. D. in Medicine, Associate Professor of the Department of General Biology and Pharmacy, Faculty of Medicine, Moscow Financial and Industrial University «Synergy», Moscow, Russia. ORCID ID: 0000-0001-7341-3648

Ekaterina V. Talikova — Ph. D. in Medicine, Associate Professor of the Department of Morphology, Pathology, and Forensic Medicine, St. Petersburg Medical and Social Institute, Saint Petersburg, Russia. ORCID ID: 0000-0001-6509-9425. SCIN-1129-8267