Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Evaluation of the antimicrobial activity of pyrimidine compound 3-(2-benzyloxy-2-oxoethyl)quinazoline-4(3H)-oh in relation to Klebsiella pneumoniae

https://doi.org/10.37489/0235-2990-2023-68-1-2-22-26

Abstract

The study is devoted to the evaluation of the antimicrobial activity against Klebsiella pneumoniae of the pyrimidine compound 3-(2-Benzyloxy-2-oxoethyl)quinazoline-4(3H)-one under in vivo conditions in a model of generalized infection. The experiment was performed on 40 CBA line mice, which were divided into four groups: Group 1, control animals that received intraperitoneal injection water in an equivalent volume (control I); Group 2, infected animals that received no treatment (control II); Group 3, mice with generalized infection that received ceftriaxone at a dose of 50 mg/kg intraperitoneally for 7 days as treatment; Group 4, infected animals that received the study compound at a dose of 31 mg/kg (1/10 of the molecular weight) for 7 days. Generalized infection was modeled by intraperitoneal injection of Cl. pneumoniae at a dose of 3×106 in a volume of 0.5 ml. In the course of the experiment, animal survival rate was evaluated. After the mice were removed from the experiment, the blood, liver, spleen and lungs were calculated, and the total number of leukocytes, C-reactive protein and procalcitonin were determined. The compound under study was found to increase the survival rate of laboratory animals under conditions of generalized Klebsiella infection, as well as to decrease the insemination index, the total number of leukocytes and the level of markers of generalized infection. Thus, the pyrimidine derivative 3-(2-Benzyloxy-2-oxoethyl)quinazolin-4(3H)-one exhibits antibacterial activity comparable to that of the reference drug — ceftriaxone against Klebsiella pneumoniae under experimental infection.

About the Authors

A. B. S. Hmidet
Astrakhan State Medical University
Russian Federation

Aisha B. S. Hmidet — student of the 6th year in the specialty «Pediatrics»

Astrakhan



A. L. Yasenyavskaya
Astrakhan State Medical University
Russian Federation

Anna L. Yasenyavskaya — Ph. D. in Medicine, Associate Professor, Head of the Research Center, Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology

121 Bakinskaya st.,  Astrakhan



A. A. Tsibizova
Astrakhan State Medical University
Russian Federation

Alexandra A. Tsybizova — Ph. D. in Pharmaceutics, Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology

Astrakhan



I. N. Tyurenkov
Volgograd State Medical University
Russian Federation

Ivan N. Tyurenkov — D. Sc. in Medicine, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Pharmacology and Pharmacy of the Institute of Continuing Medical and Pharmaceutical Education of the Faculty of Advanced Training of Doctors

Volgograd



A. A. Ozerov
Volgograd State Medical University
Russian Federation

Alexander A. Ozerov — D. Sc. in Chemistry, Professor, Head of the Department of Pharmaceutical and Toxicological Chemistry

Volgograd



M. A. Samotrueva
Astrakhan State Medical University
Russian Federation

Marina A. Samotrueva — D. Sc. in Medicine, Professor, Head of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology

Astrakhan



References

1. Yelin I., Kishony R. Antibiotic resistance. Cell. 2018; 172 (5): 1136–1136. doi: 10.1016/j.cell.2018.02.018.

2. Chatterjee A., Modarai M., Naylor N. R., Boyd S. E., Atun R., Barlow J., Robotham J. V. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect Dis. 2018; 18 (12): e368–e378. doi: 10.1016/S1473-3099(18)30296-2.

3. Singh R., Singh A. P., Kumar S., Giri B. S., Kim K. H. Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies. Journal of Cleaner Production. 2019; 234: 1484–1505. doi: 10.1016/j.jclepro.2019.06.243.

4. Chokshi A., Sifri Z., Cennimo D., Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019; 11 (1): 36. doi: 10.4103/jgid.jgid_110_18.

5. Aslam B., Wang W., Arshad M. I., Khurshid M., Muzammil S., Rasool M. H., Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018; 11: 1645. doi: 10.2147/IDR.S173867.

6. Tsibizova A. A., Yasenyavskaya A. L., Tyurenkov I. N., Ozerov A. A., Bashkina O. A., Samotrueva M. A. Evaluation of antimicrobial activity of a pyrimidine derivative against Staphylococcus aureus. Antibiotiki i Khimioter. = Antibiotics and Chemotherapy. 2022; 67: 5–6: 4–9. doi: https://doi.org/10.37489/0235-2990-2022-67-5-6-4-9. (in Russian)

7. Yasenyavskaya A. L., Tsibizova A. A., Ozerov A. A., Tyurenkov I. N., Bashkina O. A., Samotrueva M. A. Otsenka immunotoksicheskikh svoystv proizvodnykh pirimidina Immunologiya. 2022; 43 (3): 312–319. doi: https://doi.org/10.33029/0206-4952-2022-43-3-312-319. (in Russian)

8. Tolba M., El-Dean A., Ahmed M., Hassanien R., Sayed M., Zaki R., Abdel-Raheem S. Synthesis, reactions, and applications of pyrimidine derivatives. Current Chemistry Letters. 2022; 11 (1): 121–138. doi: 10.5267/j.ccl.2021.8.002

9. Bassyouni F., Tarek M., Salama A., Ibrahim B., Salah El Dine S., Yassin N., Abdel-Rehim M. Promising antidiabetic and antimicrobial agents based on fused pyrimidine derivatives: molecular modeling and biological evaluation with histopathological effect. Molecules. 2021; 26 (8): 2370. doi: 10.3390/molecules26082370.

10. Horchani M., Hajlaoui A., Harrath A. H., Mansour L., Jannet H. B., Romdhane A. New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: Design and synthesis, molecular docking and DFT studies. Journal of Molecular Structure, 2020; 1199: 127007. doi: 10.1016/j.molstruc.2019.127007.

11. Bhat A. R., Dongre R. S., Almalki F. A., Berredjem M., Aissaoui M., Touzani R., Akhter M. S. Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano 2, 3-d pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites. Bioorg Chem. 2021; 106: 104480. doi: 10.1016/j.bioorg.2020.104480.

12. Maddila S., Gorle S., Seshadri N., Lavanya P., Jonnalagadda S. B. Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives Arabian Journal of Chemistry, 2016; 9 (5): 681–687 doi: 10.1016/j.arabjc.2013.04.003.

13. Naresh Kumar R., Jitender Dev G., Ravikumar N., Krishna Swaroop D., Debanjan B., Bharath G., Narsaiah B., Nishant Jain S., Gangagni Rao A. Synthesis of novel triazole/isoxazole functionalized 7- (trifluoromethyl)pyrido2,3-dpyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg Med Chem Lett. 2016 Jun 15; 26 (12): 2927–2930. doi: 10.1016/j.bmcl.2016.04.038. Epub 2016 Apr 16. PMID: 27130357.

14. Suresh L., Sagar Vijay Kumar P., Poornachandra Y., Ganesh Kumar C., Babu N. J., Chandramouli G. V. P. An expeditious four-component domino protocol for the synthesis of novel thiazolo3,2-athiochromeno4,3- dpyrimidine derivatives as antibacterial and antibiofilm agents. Bioorg Med Chem. 2016; 24: 3808–3817 doi: 10.1016/j.bmc.2016.06.025.

15. Savateev K. V., Ulomsky E. N., Fedotov V. V., Rusinov V. L., Sivak K. V., Lyubishin M. M., Kuzmich N. N., Aleksandrov A. G. 6-nitrotriazolo1,5- apyrimidines as promising structures for pharmacotherapy of septic conditions. Russ J Bioorg Chem. 2017; 43: 421. doi: 10.1134/S1068162017040094.


Review

For citations:


Hmidet A., Yasenyavskaya A.L., Tsibizova A.A., Tyurenkov I.N., Ozerov A.A., Samotrueva M.A. Evaluation of the antimicrobial activity of pyrimidine compound 3-(2-benzyloxy-2-oxoethyl)quinazoline-4(3H)-oh in relation to Klebsiella pneumoniae. Antibiot Khimioter = Antibiotics and Chemotherapy. 2023;68(1-2):22-26. (In Russ.) https://doi.org/10.37489/0235-2990-2023-68-1-2-22-26

Views: 288


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)