Preview

Антибиотики и Химиотерапия

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Современные представления о механизмах резистентности к антимикробным препаратам Enterococcus faecalis и Enterococcus faecium

https://doi.org/10.37489/0235-2990-2020-65-11-12-38-48

Полный текст:

Аннотация

В настоящее время энтерококки всё чаще становятся этиологическими агентами разнообразных инфекционных патологий. Наиболее распространёнными видами, вызывающими большинство энтерококковых инфекций являются Enterococcus faecalis и E.faecium. Оба вида демонстрируют природную низкоуровневую устойчивость к аминогликозидам, цефалоспоринам, хинолонам, клиндамицину и ко-тримоксазолу. Кроме того, особенности их генома позволяют легко приобретать резистентность к другим, широко используемым в клинической практике антибактериальным препаратам, посредством мутаций или путём горизонтального переноса генетических детерминант устойчивости. В обзоре изложены современные знания о механизмах резистентности энтерококков к наиболее часто используемым антибактериальным препаратам.

Об авторах

Т. С. Коменкова
ФГБОУ ВО «Тихоокеанский государственный медицинский университет» МЗ РФ
Россия

Коменкова Татьяна Сергеевна — аспирант Центральной научно-исследовательской лаборатории, ResearcherID: Q-1100-2017 eLIBRARY SPIN-код: 1830-1879

пр-т Острякова, 2 пр-т Острякова, 2, г. Владивосток, Приморский край, 690002



Е. А. Зайцева
ФГБОУ ВО «Тихоокеанский государственный медицинский университет» МЗ РФ
Россия

Зайцева Елена Александровна — д. м. н., доцент, ведущий научный сотрудник Центральной научно-исследовательской лаборатории

Владивосток

ResearcherID: AAE-5268-2019 eLIBRARY SPIN-код: 4617-8685



Список литературы

1. Мельникова Е.А., Зайцева Е.А., Лучанинова В.Н., Крукович Е.В., Коменкова Т.С., Феоктистова Ю.В. Дифференцированные подходы к лечению инфекции мочевой системы у детей с учётом этиологического фактора Enterococcus faecalis. Тихоокеанский медицинский журнал. — 2019. — № 4 (78) — С. 60–65 doi: 10.34215/1609-1175-2019-4-60-65

2. Shrestha L.B., Baral R., Poudel P., Khanal B. Clinical, etiological and antimicrobial susceptibility profile of pediatric urinary tract infections in a tertiary care hospital of Nepal. BMC Pediatr 2019; 19 (1): 36. doi:10.1186/s12887-019-1410-1

3. Weber S., Hogardt M., Reinheimer C., Wichelhaus T.A., Kempf V.A.J., Kessel J. et al. Bloodstream infections with vancomycin-resistant enterococci are associated with a decreased survival in patients with hematological diseases. Ann Hematol 2019; 98 (3): 763-773. doi:10.1007/s00277-019-03607-z URL

4. Zhao-Fleming H.H., Wilkinson J.E., Larumbe E., Dissanaike S., Rumbaugh K. Obligate anaerobes are abundant in human necrotizing soft tissue infection samples — a metagenomics analysis. APMIS 2019; 127 (8): 577–587. doi:10.1111/apm.12969

5. Libertucci J., Bassis C.M., Cassone M., Gibson K., Lansing B., Mody L. et al. Bacteria Detected in both Urine and Open Wounds in Nursing Home Residents: a Pilot Study. mSphere 2019; 4 (4): e00463-19. doi:10.1128/mSphere.00463-19

6. Bi R., Qin T., Fan W., Ma P., Gu B. The emerging problem of linezolidresistant enterococci. J Glob Antimicrob Resist 2018; 13: 11–19. doi: 10.1016/j.jgar.2017.10.018.

7. Mete E., Kaleli I., Cevahir N., Demir M., Akkaya Y., Kiris Satilmis Ö. Evaluation of virulence factors in enterococcus species. Mikrobiyol Bul 2017; 51 (2): 101–114. doi:10.5578/mb.53992 URL

8. Matlou D.P., Bissong M.E.A., Tchatchouang C.K., Adem M.R., Foka F.E.T., Kumar A., et al. Virulence profiles of vancomycin-resistant enterococci isolated from surface and ground water utilized by humans in the North West Province, South Africa: a public health perspective. Environ Sci Pollut Res Int 2019; 26 (15): 15105–15114. doi:10.1007/s11356-019-04836-5 URL

9. Гненная Н.В., Сазыкин И.С., Сазыкина М.А. Механизмы приобретения микроорганизмами резистентности к антибиотикам. Вестник биотехнологии и физико-химической биологии им. Ю. А. Овчинникова. — 2018. — Т. 14. — № 1. — С. 77–85. URL https://elibrary.ru/item.asp?id=36309678

10. Сидоренко С.В., Тишков В.И. Молекулярные основы резистентности к антибиотикам. Успехи биологической химии. — 2004. — Т. 44 — № 2 — С. 263–306. URL https://www.fbras.ru/wp-content/uploads/2017/10/sidorenko.pdf

11. Супотницкий М.В. Механизмы развития резистентности к антибиотикам у бактерий. Биопрепараты. — 2011. — № 2 — С. 4–11. URL https://elibrary.ru/item.asp?id=20370194

12. Holmes A.H., Moore L.S., Sundsfjord A., Steinbakk M., Regmi S., Karkey A. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016; 387 (10014): 176–187. doi:10.1016/S0140-6736(15)00473-0

13. Zaman S.B., Hussain M.A., Nye R., Mehta V., Mamun K.T., Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus 2017; 9 (6): e1403. doi:10.7759/cureus.1403

14. Munita J.M., Arias C.A. Mechanisms of Antibiotic Resistance. Microbiol Spectr 2016; 4 (2): 10.1128/microbiolspec.VMBF-0016-2015. doi:10.1128/microbiolspec.

15. Partridge S.R., Kwong S.M., Firth N., Jensen S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31 (4): e00088-17. doi:10.1128/CMR.00088-17

16. Gilmore M.S., Clewell D.B., Ike Y., Shankar N., eds. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston: Massachusetts Eye and Ear Infirmary; 2014. URL https://www.ncbi.nlm.nih.gov/books/NBK190424/

17. Garcqía-Solache M., Rice L.B. The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev 2019; 32 (2): e00058-18. doi:10.1128/CMR.00058-18

18. Triboulet S., Bougault C.M., Laguri C., Hugonnet J.E., Arthur M., Simorre J.P. Acyl acceptor recognition by Enterococcus faecium L,Dtranspeptidase Ldtfm. Mol Microbiol 2015; 98 (1): 90–100. doi:10.1111/mmi.13104

19. Miller W.R., Munita J.M., Arias C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 2014; 12 (10): 1221–1236. doi:10.1586/14787210.2014.956092

20. O'Driscoll T., Crank C.W. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist 2015; 8: 217–230. doi:10.2147/IDR.S54125

21. Murray B.E. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother 1992; 36 (11): 2355–2359. doi:10.1128/aac.36.11.2355 URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC284334/pdf/aac00375-0029.pdf

22. Sarti M., Campanile F., Sabia C., Santagati M., Gargiulo R., Stefani S. Polyclonal diffusion of beta-lactamase-producing Enterococcus faecium. J Clin Microbiol 2012; 50 (1): 169–172. doi:10.1128/JCM.05640-11

23. Agarwal J., Kalyan R., Singh M. High-level aminoglycoside resistance and beta-lactamase production in enterococci at a tertiary care hospital in India. Jpn J Infect Dis 2009; 62 (2): 158–159. URL https://pubmed.ncbi.nlm.nih.gov/19305061/

24. Hollenbeck B.L., Rice L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012; 3 (5): 421–433. doi:10.4161/viru.21282

25. Arias C.A., Singh K.V., Panesso D., Murray B.E. Time-kill and synergism studies of ceftobiprole against Enterococcus faecalis, including beta-lactamase-producing and vancomycin-resistant isolates. Antimicrob Agents Chemother 2007; 51 (6): 2043–2047. doi:10.1128/AAC.00131-07

26. Munita J.M., Bayer A.S., Arias C.A. Evolving resistance among Gram-positive pathogens. Clin Infect Dis 2015; 61: Suppl 2: S48–S57. doi:10.1093/cid/civ523

27. Infante V.H., Conceição N., de Oliveira A.G., Darini A.L. Evaluation of polymorphisms in pbp4 gene and genetic diversity in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis from hospitals in different states in Brazil. FEMS Microbiol Lett 2016; 363 (7): fnw044. doi:10.1093/femsle/fnw044

28. Rice L.B., Carias L.L., Hutton-Thomas R., Sifaoui F., Gutmann L., Rudin S.D. Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 2001; 45 (5): 1480–1486. doi:10.1128/AAC.45.5.1480-1486.2001

29. Arias C.A., Contreras G.A., Murray B.E. Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 2010; 16 (6): 555–562. doi:10.1111/j.1469-0691.2010.03214.x

30. Niu H., Yu H., Hu T., Tian G., Zhang L., Guo X. et al. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol 2016; 47 (3): 691–696. doi:10.1016/j.bjm.2016.04.003

31. Chow J.W. Aminoglycoside resistance in enterococci. Clin Infect Dis 2000; 31 (2): 586–589. doi:10.1086/313949

32. Shete V., Grover N., Kumar M. Analysis of Aminoglycoside Modifying Enzyme Genes Responsible for High-Level Aminoglycoside Resistance among Enterococcal Isolates. J Pathog 2017; 2017: 3256952. doi:10.1155/2017/3256952

33. Решедько Г.К. Значение ферментативной модификации аминогликозидов в развитии резистентности у бактерий. Клиническая микробиология и антимикробная химиотерапия. — 1999. — Т.1 — №1 С.40–50. URL https://cmac-journal.ru/publication/1999/1/cmac-1999-t01-n1-p040/cmac-1999-t01-n1-p040.pdf

34. Kobayashi N., Alam M., Nishimoto Y., Urasawa S., Uehara N., Watanabe N. Distribution of aminoglycoside resistance genes in recent clinical isolates of Enterococcus faecalis, Enterococcus faecium and Enterococcus avium. Epidemiol Infect 2001; 126 (2): 197–204. doi:10.1017/s0950268801005271

35. Watanabe S., Kobayashi N., Quiñones D., Nagashima S., Uehara N., Watanabe N. Genetic diversity of enterococci harboring the high-level gentamicin resistance gene aac(6')-Ie-aph(2'')-Ia or aph(2'')-Ie in a Japanese hospital. Microb Drug Resist 2009; 15 (3): 185–194. doi:10.1089/mdr.2009.0917

36. El-Mahdy R., Mostafa A., El-Kannishy G. High level aminoglycoside resistant enterococci in hospital-acquired urinary tract infections in Mansoura, Egypt. Germs 2018; 8 (4): 186–190. doi:10.18683/germs.2018.1145

37. Padmasini E., Padmaraj R., Ramesh S.S. High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India. ScientificWorldJournal 2014; 2014: 329157. doi:10.1155/2014/329157

38. Wright G.D., Thompson P.R. Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front Biosci 1999; 4: D9-D21. doi:10.2741/wright

39. Amini F., Krimpour H.A., Ghaderi M., Vaziri S., Ferdowsi S., Azizi M. et al. Prevalence of aminoglycoside resistance genes in Enterococcus strains in Kermanshah, Iran. Iran J Med Sci 2018; 43 (5): 487–493.

40. Economou V., Sakkas H., Delis G., Gousia P. Antibiotic resistance in enterococcus spp. friend or foe? Foodborne Pathogens and Antibiotic Resistance. John Wiley & Sons, Inc.; 2017; 365–395. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119139188.ch16

41. Alcock B.P. et al. 2020. CARD 2020: antibiotic resistome surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 48, D517–D525. doi: 10.1093/nar/gkz935.

42. Abdelkareem M.Z., Sayed M., Hassuna N.A., Mahmoud M.S., Abdelwahab S.F. Multi-drug-resistant Enterococcus faecalis among Egyptian patients with urinary tract infection. J Chemotherapy 2017; 29 (2): 74–82. doi:10.1080/1120009X.2016.1182358

43. Donabedian S.M., Thal L.A., Hershberger E. et al. Molecular characterization of gentamicin-resistant Enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol 2003; 41 (3): 1109–1113. doi:10.1128/jcm.41.3.1109-1113.2003

44. Светоч Э.А., Теймуразов М.Г., Тазина О.И., Абаимова А.А., Лев А.И., Асташкин Е.И. и др. Антибиотикорезистентность культур Enterococcus spp., выделенных от промышленной птицы в 2013–2016 гг. в хозяйствах Российской Федерации, и детекция у них генов резистентности к ванкомицину. Альманах клинической медицины. — 2017. — № 45 (2) — С. 138–146. doi.org/10.18786/2072-0505-2017-45-2-138-146

45. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006; 42 Suppl 1: S25–S34. doi:10.1086/491711

46. Evers S., Quintiliani R. Jr., Courvalin P. Genetics of glycopeptide resistance in enterococci. Microb Drug Resist 1996; 2 (2): 219–223. doi:10.1089/mdr.1996.2.219

47. Sun M., Wang Y., Chen Z., Zhu X., Tian L., Sun Z. The first report of the vanC1 gene in Enterococcus faecium isolated from a human clinical specimen. Mem Inst Oswaldo Cruz 2014; 109 (6): 712–715. doi:10.1590/0074-0276140019

48. Nishiyama M., Iguchi A., Suzuki Y. Identification of Enterococcus faecium and Enterococcus faecalis as vanC-type Vancomycin-Resistant Enterococci (VRE) from sewage and river water in the provincial city of Miyazaki, Japan. J Environ Sci Health A Tox Hazard Subst Environ Eng 2015; 50 (1): 16–25. doi:10.1080/10934529.2015.964599

49. Bert F., Leflon-Guibout V., Le Grand J., Bourdon N., Nicolas-Chanoine M.H. Emergence d'ente´rocoque de´pendant de la vancomycine à la suite d'un traitement par glycopeptide: cas clinique et revue. Pathol Biol (Paris) 2009; 57 (1): 56–60. [in French] doi:10.1016/j.patbio.2008.07.017

50. Pre´vost M., Van Belle D., Tulkens P.M., Courvalin P., Van Bambeke F. Modeling of Enterococcus faecalis D-alanine:D-alanine ligase: structurebased study of the active site in the wild-type enzyme and in glycopeptidedependent mutants. J Mol Microbiol Biotechnol 2000; 2 (3): 321–330. URL https://pubmed.ncbi.nlm.nih.gov/10937441/

51. Silverman J.A., Perlmutter N.G., Shapiro H.M. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47 (8): 2538–2544. doi:10.1128/aac.47.8.2538-2544.2003

52. Mishra N.N., Bayer A.S., Tran T.T., Shamoo Y., Mileykovskaya E., Dowhan W. et al. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS One 2012; 7 (8): e43958. doi:10.1371/journal.pone.0043958

53. Arias C.A., Panesso D., McGrath D.M. et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 2011; 365 (10): 892–900. doi:10.1056/NEJMoa1011138

54. Khan A., Davlieva M., Panesso D., Rincon S., Miller W.R., Diaz L. et al. Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis [published online ahead of print, 2019 Dec 9]. Proc Natl Acad Sci USA 2019; 116 (52): 26925-26932. doi:10.1073/pnas.1916037116

55. Munita J.M., Tran T.T., Diaz L. et al. A liaF codon deletion abolishes daptomycin bactericidal activity against vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 2013; 57 (6): 2831–2833. doi:10.1128/AAC.00021-13

56. Bender J.K., Cattoir V., Hegstad K., Sadowy E., Coque T.M., Westh H. et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat 2018; 40: 25–39. doi:10.1016/j.drup.2018.10.002

57. Beganovic M., Luther M.K., Rice L.B., Arias C.A., Rybak M.J., LaPlante K.L. A review of combination antimicrobial therapy for Enterococcus faecalis bloodstream infections and infective endocarditis. Clin Infect Dis 2018; 67 (2): 303–309. doi:10.1093/cid/ciy064

58. Cavaco L.M., Bernal J.F., Zankari E., Leon M., Hendriksen R.S., Perez-Gutierrez E. et al. Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia). J Antimicrob Chemother 2017; 72 (3): 678–683. doi:10.1093/jac/dkw490

59. Diaz L., Kiratisin P., Mendes R.E., Panesso D., Singh K.V., Arias C.A. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 2012; 56 (7): 3917–3922. doi:10.1128/AAC.00419-12

60. Klupp E.M., Both A., Belmar Campos C. et al. Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates. Eur J Clin Microbiol Infect Dis 2016; 35 (12): 1957–1961. doi:10.1007/s10096-016-2747-0

61. Chen H., Wu W., Ni M., Liu Y., Zhang J., Xia F. et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents 2013; 42 (4): 317–321. doi:10.1016/j.ijantimicag.2013.06.008

62. Schwarz S., Werckenthin C., Kehrenberg C. Identification of a plasmidborne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother 2000; 44 (9): 2530–2533. doi:10.1128/aac.44.9.2530-2533.2000

63. Long K.S., Poehlsgaard J., Kehrenberg C., Schwarz S., Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother 2006; 50 (7): 2500–2505. doi:10.1128/AAC.00131-06

64. Lazaris A., Coleman D.C., Kearns A.M., Pichon B., Kinnevey P.M., Earls M.R. et al. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 2017; 72 (12): 3252–3257. doi:10.1093/jac/dkx292

65. Cercenado E. Enterococcus: resistencias fenotéípicas y genotípicas y epidemiología en España. Enferm Infecc Microbiol Clin 2011; 29: Suppl 5: 59–65. (in Spanish) doi:10.1016/S0213-005X(11)70045-3

66. Zhang Y., Dong G., Li J., Chen L., Liu H., Bi W. et al. A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China. Eur J Clin Microbiol Infect Dis 2018; 37 (8): 1441–1448. doi:10.1007/s10096-018-3269-8

67. Deshpande L.M., Ashcraft D.S., Kahn H.P., Pankey G., Jones R.N., Farrell D.J. et al. Detection of a new cfr-Like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 2015; 59 (10): 6256–6261. doi:10.1128/AAC.01473-15

68. Bender J.K., Fleige C., Klare I., Fiedler S., Mischnik A., Mutters N.T. et al. Detection of a cfr(B) variant in German Enterococcus faecium clinical isolates and the impact on linezolid resistance in Enterococcus spp. PLoS One 2016; 11 (11): e0167042. doi:10.1371/journal.pone.0167042

69. Inkster T., Coia J., Meunier D., Doumith M., Martin K., Pike R. et al. First outbreak of colonization by linezolid- and glycopeptide-resistant Enterococcus faecium harbouring the cfr gene in a UK nephrology unit. J Hosp Infect 2017; 97 (4): 397–402. doi:10.1016/j.jhin.2017.07.003

70. Morroni G., Brenciani A., Antonelli A., D'Andrea M.M., Pilato V.Di., Fioriti S. et al. Characterization of a multiresistance plasmid carrying the optra and cfr resistance genes from an Enterococcus faecium clinical isolate. Front Microbiol 2018; 9: 2189. doi:10.3389/fmicb.2018.

71. Bonilla H., Huband M.D., Seidel J., Schmidt H., Lescoe M., McCurdy S.P. et al. Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin Infect Dis 2010; 51 (7): 796ç800. doi:10.1086/656281

72. Argudín M.A., Youzaga S., Dode´mont M., Heinrichs A., Roisin S., Deplano A. et al. Detection of optrA-positive enterococci clinical isolates in Belgium. Eur J Clin Microbiol Infect Dis 2019; 38 (5): 985–987. doi:10.1007/s10096-019-03504-3

73. Brenciani A., Fioriti S., Morroni G., Cucco L., Morelli A., Pezzotti G. et al. Detection in Italy of a porcine Enterococcus faecium isolate carrying the novel phenicol-oxazolidinone-tetracycline resistance gene poxtA. J Antimicrob Chemother 2019; 74 (3): 817–818. doi:10.1093/jac/dky505

74. Marco F., Dowzicky M.J. Antimicrobial susceptibility among important pathogens collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) in Spain, 2004–2014. J Glob Antimicrob Resist 2016; 6: 50–56. doi:10.1016/j.jgar.2016.02.005 URL

75. Werner G., Gfrörer S., Fleige C., Witte W., Klare I. Tigecycline-resistant Enterococcus faecalis strain isolated from a German intensive care unit patient. J Antimicrob Chemother 2008; 61 (5): 1182–1183. doi:10.1093/jac/dkn065

76. Cordina C., Hill R., Deshpande A., Hood J., Inkster T. Tigecyclineresistant Enterococcus faecalis associated with omeprazole use in a surgical patient. J Antimicrob Chemother 2012; 67 (7): 1806–1807. doi:10.1093/jac/dks122

77. Freitas A.R., Novais C., Correia R., Monteiro M., Coque T.M., Peixe L. Non-susceptibility to tigecycline in enterococci from hospitalised patients, food products and community sources. Int J Antimicrob Agents 2011; 38 (2): 174–176. doi:10.1016/j.ijantimicag.2011.04.014

78. Dabul A.N.G., Avaca-Crusca J.S., Navais R.B., Merlo T.P., Van Tyne D., Gilmore M.S. et al. Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage. Infect Genet Evol 2019; 67: 23–32. doi:10.1016/j.meegid.2018.10.018

79. Woz´niak-Biel A., Bugla-Ploskon´ska G., Burdzy J., Korzekwa K., Ploch S., Wieliczko A. Antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from humans and turkeys in Poland. Microb Drug Resist 2019; 25 (2): 277–286. doi:10.1089/mdr.2018.0221

80. Demirgül F., Tuncer Y. Detection of antibiotic resistance and resistance genes in enterococci isolated from sucuk, a traditional turkish dry-fermented sausage [published correction appears in Korean J Food Sci Anim Resour 2017; 37 (6): 963. Korean J Food Sci Anim Resour 2017; 37 (5): 670–681. doi:10.5851/kosfa.2017.37.5.670

81. Agersø Y., Pedersen A.G., Aarestrup F.M. Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J Antimicrob Chemother 2006; 57 (5): 832–839. doi:10.1093/jac/dkl069

82. Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J Bacteriol 1996; 178 (11): 3246–3251. doi:10.1128/jb.178.11.3246-3251.1996

83. Fiedler S., Bender J.K., Klare I., Halbedel S., Grohmann E., Szewzyk U. et al. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother 2016; 71 (4): 871–881. doi:10.1093/jac/dkv420

84. Aarestrup F.M., Agerso Y., Gerner-Smidt P., Madsen M., Jensen L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 2000; 37 (2): 127–137. doi:10.1016/s0732-8893(00)00130-9

85. Ridenhour M.B., Fletcher H.M., Mortensen J.E., Daneo-Moore L. A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKq10 in Enterococcus faecium. Plasmid 1996; 35 (2): 71–80. doi:10.1006/plas.1996.0009

86. Weigel L.M., Donlan R.M., Shin D.H. et al. High-level vancomycinresistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 2007; 51 (1): 231–238. doi:10.1128/AAC.00576-06

87. Caryl J.A., Cox G., Trimble S., O'Neill A.J. «tet(U)» is not a tetracycline resistance determinant. Antimicrob Agents Chemother 2012; 56 (6): 3378–3379. doi:10.1128/AAC.05957-11

88. Grossman T.H. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med 2016; 6 (4): a025387. doi:10.1101/cshperspect.a025387

89. Said H.S., Abdelmegeed E.S. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect Drug Resist 2019; 12:1113–1125. doi:10.2147/IDR.S189341

90. Zilhao R., Papadopoulou B., Courvalin P. Occurrence of the Campylobacter resistance gene tetO in Enterococcus and Streptococcus spp. Antimicrob Agents Chemother 1988; 32 (12): 1793–1796. doi:10.1128/aac.32.12.1793

91. Singh K.V., Weinstock G.M., Murray B.E. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother 2002; 46 (6): 1845–1850. doi:10.1128/aac.46.6.1845-1850.2002

92. Horaud T., Le Bouguenec C., Pepper K. Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci. J Antimicrob Chemother. 1985;16 Suppl A: 111–135. doi:10.1093/jac/16.suppl_a.111

93. Portillo A., Ruiz-Larrea F., Zarazaga M., Alonso A., Martinez J.L., Torres C. Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother 2000; 44 (4): 967–971. doi:10.1128/aac.44.4.967-971.2000

94. Leavis H.L., Willems R.J., Top J., Bonten M.J. High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol 2006; 44 (3): 1059–1064. doi:10.1128/JCM.44.3.1059-1064.2006

95. Onodera Y., Okuda J., Tanaka M., Sato K. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis. Antimicrob Agents Chemother 2002; 46 (6): 1800–1804. doi:10.1128/aac.46.6.1800-1804.2002

96. Yasufuku T., Shigemura K., Shirakawa T., Matsumoto M., Nakano Y., Tanaka K. et al. Mechanisms of and risk factors for fluoroquinolone resistance in clinical Enterococcus faecalis isolates from patients with urinary tract infections. J Clin Microbiol 2011; 49 (11): 3912–3916. doi:10.1128/JCM.05549-11

97. Lynch C., Courvalin P., Nikaido H. Active efflux of antimicrobial agents in wild-type strains of enterococci. Antimicrob Agents Chemother 1997; 41 (4): 869–871. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC163815/pdf/410869.pdf

98. Arsène S., Leclercq R. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother 2007; 51 (9): 3254–3258. doi:10.1128/AAC.00274-07


Для цитирования:


Коменкова Т.С., Зайцева Е.А. Современные представления о механизмах резистентности к антимикробным препаратам Enterococcus faecalis и Enterococcus faecium. Антибиотики и Химиотерапия. 2020;65(11-12):38-48. https://doi.org/10.37489/0235-2990-2020-65-11-12-38-48

For citation:


Komenkova T.S., Zaitseva E.A. Modern View on Enterococcus faecalis and Enterococcus faecium Resistance Mechanisms to Antibiotics. Antibiotics and Chemotherapy. 2020;65(11-12):38-48. (In Russ.) https://doi.org/10.37489/0235-2990-2020-65-11-12-38-48

Просмотров: 2082


ISSN 0235-2990 (Print)

  collaborator - эффективное продвижение статьями