Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Antibacterial Activity of the Halogen- and Nitro Derivatives of Benzimidazole Against Bacillus Subtilis

https://doi.org/10.37489/0235-2990-2023-68-3-4-19-24

Abstract

Background. Antibiotic resistance of bacteria is a serious concern for modern medicine. The search for new compounds with a pronounced antibacterial effect is an urgent task of pharmaceutical chemistry. The aim of the study was to assess nfluence of the structure of benzimidazole and its derivatives the ability to inhibit the growth of gram-positive bacteria Bacillus subtilis. Materials and methods. Antibacterial activity of diazaheterocycles was evaluated by the method of serial dilutions. Сoncentrations from 0,06 to 1000 µg/l were used. Тhe minimum inhibitory concentration (MIC) of benzimidazole derivatives against Bacillus subtilis BKM B-407 was determined. The antibacterial effect of the studied halogen- and nitrobenzimidazoles was compared with the antimicrobial activity of benzimidazole. Results. The antimicrobial activity of the 12 benzimidazole derivatives was established. 2-trifluoromethylbenzimidazoles containing halogen atoms in the phenylene fragment had the most pronounced inhibitory effect. The dihalogenated derivatives exhibited greater antibacterial activity than the compounds with one halogen atom in the benzene ring. 5,6-dibromo-2-(trifluoromethyl)benzimidazole was the most active compound with an MIC of 0.49 µg/mL, comparable to the commercial antibiotic tetracycline. The antibacterial activity of erythromycin is a half that of this substance. Conclusions. Polyhalogen derivatives of benzimidazole are promising compounds for the development of new antimicrobial drugs against Gram-positive bacteria.

About the Authors

R. S. Begunov
P. G. Demidov Yaroslavl State University
Russian Federation

Roman S. Begunov — Ph. D. in Chemistry, Associate Professor, Faculty of Biology and Ecology

14, Sovetskaya str., Yaroslavl, 150003 Russia.


Competing Interests:

The authors declare no conflict of interest related to the publication of this article.



D. O. Egorov
P. G. Demidov Yaroslavl State University
Russian Federation

Dmitry O. Egorov — Postgraduate Student, Faculty of Biology and Ecology

Yaroslavl


Competing Interests:

The authors declare no conflict of interest related to the publication of this article.



A. V. Chetvertakova
P. G. Demidov Yaroslavl State University
Russian Federation

Anna V. Chetvertakova — Student, Faculty of Biology and Ecology

Yaroslavl


Competing Interests:

The authors declare no conflict of interest related to the publication of this article.



L. I. Savina
P. G. Demidov Yaroslavl State University
Russian Federation

Savina Luisa Ilyinichna — Student, Faculty of Biology and Ecology

Yaroslavl


Competing Interests:

The authors declare no conflict of interest related to the publication of this article.



A. A. Zubishina
P. G. Demidov Yaroslavl State University
Russian Federation

Zubishina Alla Aleksandrovna — Ph. D. in Biology, Associate Professor, Faculty of Biology and Ecology

eLibrary SPIN code: 3578-4588. AuthorID: 91911.

Yaroslavl


Competing Interests:

The authors declare no conflict of interest related to the publication of this article.



References

1. Brishty S.R., Hossain Md.J., Khandaker M.U., Faruque M.R.I., Osman H., Rahman S.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front Pharmacol. 2021;12: 762807. doi: 10.3389/fphar.2021.762807.

2. Jabłońska-Wawrzycka A., Rogala P., Czerwonka G., Gałczyńska K., Drabik M., Dańczuk M. Ruthenium complexes with 2-pyridin-2-yl-1h-benzimidazole as potential antimicrobial agents: Correlation between chemical properties and anti-biofilm effects. Int J Mol Sci. 2021; 22 (18): 10113. doi: 10.3390/ijms221810113.

3. Sambanthamoorthy K., Gokhale A.A., Lao W., Parashar V., Neiditch M.B., Semmelhack M.F. et al. Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother. 2011; 55 (9): 4369–4378. doi: 10.1128/aac.00583-11.

4. Shrestha L., Kayama S., Sasaki M., Kato F., Hisatsune J., Tsuruda K. et al. Inhibitory effects of antibiofilm compound 1 against Staphylococcus aureus biofilms. Microbiol Immunol. 2016; 60 (3): 148–159. doi: 10.1111/1348-0421.12359.

5. Zha G-F., Preetham H.D., Rangappa S., Sharath Kumar K.S., Girish Y.R.,Rakesh K.P. et al. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance Staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem. 2021; 115: 105175. doi: 10.1016/j.bioorg.2021.105175.

6. Pennings L.J., Ruth M.M., Wertheim H.F.L., van Ingen J. The Benzimidazole SPR719 shows promising concentration-dependent activity and synergy against nontuberculous mycobacteria. Antimicrob Agents Chemother. 2021; 65 (4): e02469–20. doi: 10.1128/aac.02469-20.

7. Starkey M., Lepine F., Maura D., Bandyopadhaya A., Lesic B., He J. et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. M. Whiteley (ed.). PLoS Pathogens. 2014; 10 (8): e1004321. doi: 10.1371/journal.ppat.1004321.

8. Zaitseva Yu.V., Egorov D.O., Begunov R.S., Khlopotinin A.I. Antibacterial and antibiofilm activity of polyfunctional benzimidazole derivatives. Acta Biomedica Scientifica. 2022; 7 (3): 134–141. doi: https://doi.org/10.29413/ABS.2022-7.3.14.

9. Andrzejewska M., Yépez-Mulia L., Cedillo-Rivera R., Tapia A., Vilpo L., Vilpo J. et al. Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyland 2-pentafluoroethylbenzimidazoles. Eur J Med Chemi. 2002; 37 (12): 973–978. doi: 10.1016/s0223-5234(02)01421-6.

10. Laudy A.E., Moo-Puc R., Cedillo-Rivera R., Kazimierczuk Z., Orzeszko A. Synthesis and antimicrobial activities of new polyhalogenated benzimidazoles. J Heterocyclic Chem. 2012; 49 (5): 1059–1065. doi: 10.1002/jhet.936.

11. Earl A.M., Losick R., Kolter R. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 2008;16 (6): 269–275. doi: 10.1016/j.tim.2008.03.004.

12. de Boer Sietske A., Diderichsen B. On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. App Microbiol Biotechnol. 1991; 36 (1): 1–4. doi: 10.1007/bf00164689.

13. Moschonas G., Lianou A., Nychas G.E., Panagou E.Z. Spoilage potential of Bacillus subtilis in a neutral-pH dairy dessert. Food Microbiol. 2021; 95: 103715. doi: 10.1016/j.fm.2020.103715.

14. Pavic S., Brett M., Petric N., Lastre D., Smoljanovic M., Atkinson M. et al. An outbreak of food poisoning in a kindergarten caused by milk powder containing toxigenic Bacillus subtilis and Bacillus licheniformis. Archiv für Lebensmittelhygiene. 2005; 56 (1): 20–22.

15. Apetroaie-Constantin C., Mikkola R., Andersson M.A., Teplova V., Suominen I., Johansson T., et al. Bacillus subtilis and B.mojavensisstrains connected to food poisoning produce the heat stable toxin amylosin. J App Microbiol. 2009; 106 (6): 1976–1985. doi: 10.1111/j.1365-2672.2009.04167.x.

16. Zhu T.F., Chen F.F., Li J.C. A strain of pathogenic Bacillus subtilis results in brain damage in ducklings when co-infected with Riemerella anatipestifer. Pol J Vet Sci. 2017; 20 (4): 803–809. doi: 10.1515/pjvs-2017-0101.

17. Gu H., Li M., Sun L. A deep-sea pathogenic Bacillus subtilis isolate employs different strategies to escape the killing of teleost and murine complements. Dev Compa Immunol. 2021; 119: 104037. doi: 10.1016/j.dci.2021.104037.

18. Patent RUS № 2509149 C1/ 10.03.2014 Bacillus subtilis subsp Subtilis strain having apparent antagonism in relation to Escherichia coli, Salmonella typhi, Staphylococcus aureus, Listeria monocytogenes and resistance to streptomycin and tetracycline. Dostupno po: https://patents.google.com/patent/RU2509149C1/ru. Ssylka aktivna na: 16.12.2022. (in Russian)

19. Sizentsov A.N., Bliyalkina D.K., Galaktionova L.V., Salnikova E.V. Evaluation of resistance of isolated soil strains of Bacillus subtilis to antibacterial drugs on the example of amoxicillin and ceftriaxone. Agrarian Science. 2022; 1 (7–8): 74–79. doi: https://doi.org/10.32634/0869-8155-2022-361-7-8-74-79. (in Russian)

20. Yenikeyev R.R., Tatarinova N.Y., Zakharchuk L.M. Mechanisms of resistance to clinically significant antibiotics of strains of bacteria of the genus Bacillus isolated from samples delivered from the International Space Station. Vestnik Moskovskogo Universiteta. Seriya 16. Biologiya. 2020; 75 (4): 265–272. https://vestnik-bio-msu.elpub.ru/jour/article/view/937. (in Russian)

21. Nwosu V.C. Antibiotic resistance with particular reference to soil microorganisms. Res Microbiol. 2001; 152 (5): 421–430. doi: 10.1016/s0923-2508(01)01215-3.

22. Donkova N.V., Donkov S.A., Kadetova M.Y. Studying the stability to antibiotics of bacteria of the genus bacillus by serial breeding method. Vestnik Krasnoyarskogo Gosudarstvennogo Agrarnogo Universiteta. 2019; 5: 94–100. (in Russian)

23. Cindrić M., Perić M., Kralj M., Martin-Kleiner I., David-Cordonnier M-H., Paljetak H.Č. et al. Antibacterial and antiproliferative activity of novel 2-benzimidazolyl- and 2-benzothiazolyl-substituted benzo[b]thieno-2-carboxamides. Mol Divers. 2018; 22 (3): 637–646. doi: 10.1007/s11030-018-9822-7.

24. Starkey M., Lepine F., Maura D., Bandyopadhaya A., Lesic B., He J. et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 2014; 10 (8): e1004321. doi: 10.1371/journal.ppat.1004321.

25. Ansari K.F., Lal C. Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur J Med Chem. 2009; 44 (10): 4028–33. doi: 10.1016/j.ejmech.2009.04.037.

26. Yale H.L. The trifluoromethyl group in medical chemistry. J Med Pharm Chem. 1959; 1 (2): 121–133. doi: 10.1021/jm50003a001.

27. Singh I., Al-Wahaibi L.H., Srivastava R., Prasad O., Pathak S.K., Kumar S. et al. DFT study on the electronic properties, spectroscopic profile, and biological activity of 2-Amino-5-trifluoromethyl-1,3,4-thiadiazole with anticancer properties. ACS Omega. 2020; 5 (46): 30073–30087. doi: 10.1021/acsomega.0c04474.


Review

For citations:


Begunov R.S., Egorov D.O., Chetvertakova A.V., Savina L.I., Zubishina A.A. Antibacterial Activity of the Halogen- and Nitro Derivatives of Benzimidazole Against Bacillus Subtilis. Antibiot Khimioter = Antibiotics and Chemotherapy. 2023;68(3-4):19-24. (In Russ.) https://doi.org/10.37489/0235-2990-2023-68-3-4-19-24

Views: 904


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)