Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Determination of the Anti-Escherichial Activity of the Pyrimidine Derivative 3-[2-[(4,6-dimethylpyrimidin-2- yl)amino]-2-oxoethyl]quinazolin-4(3H)-one

https://doi.org/10.37489/0235-2990-2023-68-7-8-4-10

Abstract

The aim of this study was to investigate the antimicrobial activity of the pyrimidine derivative 3-[2-[(4,6-dimethylpyrimidin-2-yl)amino]-2-oxoethyl]quinazolin-4(3H)-one against Escherichia coli. The study of antimicrobial activity was carried out in vitro by serial dilutions of the pyrimidine compound, followed by determination of the minimum inhibitory concentration of 3-[2-[(4,6-dimethylpyrimidin-2-yl)amino]-2-oxoethyl]quinazolin-4(3n)-one (VMA-13-14) and in vivo on the model of generalized E.coli infection. The study of antimicrobial activity in vivo was carried out on 40 CBA mice weighing 19–20 g. All manipulations with animals were performed in accordance with the requirements of the regulatory documentation governing the maintenance of laboratory animals and work involving them. The antimicrobial activity of the pyrimidine compound 3-[2-[(4,6-dimethylpyrimidin-2-yl)amino]-2-oxoethyl]quinazolin-4(3H)-one against E.coli in vitro was evaluated in terms of mouse survival, contamination of blood and internal organs (liver, spleen, lungs, brain), as well as the total number of leukocytes and leukograms. The experiment determined that the pyrimidine compound 3-[2-[(4,6-di- methylpyrimidin-2-yl)amino]-2-oxoethyl]quinazolin-4(3n)-one demonstrates antimicrobial activity against E.coli: in vitro, it has a bactericidal effect at a concentration of 128 µg/ml; in vivo, it has an antimicrobial effect in conditions of generalized infection with the introduction of 50 mg/kg/day for 10 days. The antimicrobial effect of 3-[2-[(4,6-dimethylpyrimidin-2- yl)amino]-2-oxoethyl]quinazolin-4(3n)-one is comparable to ceftazidime, which is the drug of choice in the treatment of E.coli infection.

About the Authors

A. A. Tsibizova
Astrakhan State Medical University
Russian Federation

Alexandra A. Tsibizova — Ph. D. in Pharmaceutics, Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology, and Biotechnology

Astrakhan



A. L. Yasenyavskaya
Astrakhan State Medical University
Russian Federation

Anna L. Yasenyavskaya — Ph. D. in Medicine, Associate Professor, Head of the Research Center, Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology, and Biotechnology

Astrakhan



I. N. Tyurenkov
Volgograd State Medical University
Russian Federation

Ivan N. Tyurenkov — D. Sc. in Medicine, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Pharmacology and Pharmacy of the Institute of Continuing Medical and Pharmaceutical Education of the Faculty of Advanced Training of Doctors

Volgograd



А. А. Ozerov
Volgograd State Medical University
Russian Federation

Alexandr A. Ozerov — D. Sc. in Chemistry, Professor, Head of the Department of Pharmaceutical and Toxicological Chemistry

Volgograd



M. А. Samotrueva
Astrakhan State Medical University
Russian Federation

Marina A. Samotrueva — D. Sc. in Medicine, Professor, Head of the Department of Pharmacognosy, Pharmaceutical Technology, and Biotechnology 

Astrakhan



References

1. MacGowan A., Macnaughton E. Antibiotic resistance. Medicine. 2017; 10 (45): 622–628. doi: 10.1016/j.mpmed.2017.07.006.

2. Frieri M., Kumar K., Boutin A. Antibiotic resistance. J Infect Public Health. 2017; 10 (4): 369–378. doi: 10.1016/j.jiph.2016.08.007.

3. Zaman S.B., Hussain M.A., Nye R., Mehta V., Mamun K.T. et al. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017; 9 (6): e1403. doi: 10.7759/cureus.1403.

4. Chokshi A., Sifri Z., Cennimo D., Horng H. Global Contributors to antibiotic resistance. J Glob Infect Dis. 2019; 11(1): 36–42. doi: 10.4103/jgid.jgid_110_18.

5. Lee D. S., Lee S.-J., Choe H.-S. Community-acquired urinary tract infection by Escherichia coli in the era of antibiotic resistance. BioMed Res Int. 2018; 2018: 7656752. doi: 10.1155/2018/7656752.

6. O'Flaherty E., Borrego C.M., Balcázar J.L., Cummins E. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water. Sci Total Environ. 2018; 616–617: 1356–1364. doi:10.1016/j.scitotenv.2017.10.180.

7. Rani J., Kumar S., Saini M., Mundlia J., Verma P. K. Biological potential of pyrimidine derivatives in a new era. Res Chem Intermed. 2016; 42: 6777–6804. doi:10.1007/s11164-016-2525-8.

8. Ajmal R. B. Biological activity of pyrimidine derivativies: a review. Organic & Medicinal Chem IJ. 2017; 2(2): 555581. doi: 10.19080/OMCIJ. 2017.02.555581.

9. Chiacchio M. A., Iannazzo D., Romeo R., Giofrè S. V., Legnani L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr Med Chem. 2019; 40 (26): 7166–7195. doi: 10.2174/ 0929867325666180904125400.

10. Mallikarjunaswamy C., Mallesha L., Bhadregowda D. G., Pinto O. Studies on synthesis of pyrimidine derivatives and their antimicrobial activity. Arabian Journal of Chemistry. 2017; 10: 484–S490. doi: 10.1016/j.arabjc.2012.10.008.

11. Samotrueva M. A., Ozerov A. A., Starikova A. A., Gabitova N. M., Merezhkina D. V., Tsibizova A. A. i dr. Izuchenie antimikrobnoy aktivnosti novykh khinazolin-4(3n)-onov po otnosheniyu k Staphylococcus aureus i Streptococcus pneumoniae. Farmatsiya i farmakologiya. 2021; 9 (4): 318–329. doi: 10.19163/2307-9266-2021-9-4-318- 329. (in Russian)

12. Fesatidoua M., Petroua A., Geronikakia A. Heterocycle compounds with antimicrobial activity. Curr Pharm Des. 2020; 26 (8): 867–904. doi: 10.2174/1381612826666200206093815.

13. Maddilaa S., Gorleb S., Seshadric N., Lavanyad P., Jonnalagadda S. B. Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arabian Journal of Chemistry. 2016; 9: 681–687 doi: 10.1016/j.arabjc.2013.04.003.

14. Tret'yakova E. V., Salimova E. V., Parfenova L. V. Synthesis, modification, and biological activity of propargylated methyl dihydroquinopimarates. Nat Prod Res. 2022; 36 (1): 79–86. doi: 10.1080/14786419.2020.1762187.

15. Starikova, A. A., Gabitova, N. M.-K., Cibizova, A. A., Ozerov A. A., Tyurenkov I. N. i dr. Izuchenie antimikrobnoj aktivnosti novyh proizvodnyh hinazolin-4(3n)-ona po otnosheniyu k Echerichia coli i Klebsiella pnevmoniae. Astrahanskij medicinskij zhurnal. 2022; 1 (17): 60–71. doi: https://doi.org/10.48612/agmu/2022.17.1.60.71. (in Russian)

16. Elkanzi N. A. A., Bakr R. B. Microwave assisted, antimicrobial activity and molecular modeling of some synthesized newly pyrimidine derivatives using 1, 4- diazabicyclo[2.2.2]octane as a Catalyst. 2020; 12 (17): 1538–1551. doi: 10.2174/1570180817999200802033351.


Review

For citations:


Tsibizova A.A., Yasenyavskaya A.L., Tyurenkov I.N., Ozerov А.А., Samotrueva M.А. Determination of the Anti-Escherichial Activity of the Pyrimidine Derivative 3-[2-[(4,6-dimethylpyrimidin-2- yl)amino]-2-oxoethyl]quinazolin-4(3H)-one. Antibiot Khimioter = Antibiotics and Chemotherapy. 2023;68(7-8):4-10. (In Russ.) https://doi.org/10.37489/0235-2990-2023-68-7-8-4-10

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)