Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Evaluation of the Antiviral Activity of Drugs from the Group of Polymer Electrolyte Derivatives against a Wide Range of Viruses

https://doi.org/10.37489/0235-2990-2023-68-9-10-34-41

Abstract

Background. The modern healthcare system is constantly improving and introducing new measures to protect the population from viral diseases, but the experience of the COVID-19 pandemic has shown that infections cannot always be controlled on global scale. In this regard, the development of new broad-spectrum antiviral drugs is more relevant than ever.

The aim of the study was to investigate the antiviral activity and cytotoxicity of copolymers of sodium styrene sulfonate and vinyl monomers of various chemical structures, as well as to identify promising polymers for the development of new antiviral agents.

Materials and methods. 14 copolymers of sodium styrene sulfonate (NaSS) with various functional comonomers were synthesized. Three viruses with different reproduction strategies and transmission methods — respiratory syncytial virus, influenza virus, and herpes virus — were selected for the assessment of antiviral activity.

Results. The screening identified copolymers that showed high activity against all three viruses. It was found that the introduction of various functional groups into the structure of NaSS did not decrease antiviral activity, but significantly reduced cytotoxicity. The molecular weight has also shown a noticeable effect on the activity. Different sensitivity of viruses and cells to the studied polymers was revealed, likely due to the structural features of the virus shell and cell wall.

Conclusions. The results demonstrate the potential of sodium styrene sulfonate copolymers as a model for developing a broad-spectrum antiviral drug.

About the Authors

D. N. Razgulyaeva
Smorodintsev Research Institute of Influenza
Russian Federation

Daria N. Razgulyaeva — Junior Researcher at the Laboratory of Chemotherapy of Viral Infections

15/17 Prof. Popova st., Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, Saint-Petersburg, 197022 



A. M. Klabukov
Smorodintsev Research Institute of Influenza
Russian Federation

Artyom M. Klabukov — Junior Researcher at the Laboratory of Chemotherapy of Viral Infections

Saint-Petersburg



A. V. Galochkina
Smorodintsev Research Institute of Influenza
Russian Federation

Anastasia V .Galochkina — Ph. D. in Biology, Leading Researcher at the Laboratory of Chemotherapy of Viral Infections

Saint-Petersburg



A. V. Garshinina
Smorodintsev Research Institute of Influenza
Russian Federation

Anzhelika V. Garshinina — Researcher at the Laboratory of Chemotherapy of Viral Infections

Saint-Petersburg



O. N. Zhuravskaya
Institute of Macromolecular Compounds of the RAS
Russian Federation

Olga N. Zhuravskaya — Junior Researcher 

Saint-Petersburg



I. I. Gavrilova
Institute of Macromolecular Compounds of the RAS
Russian Federation

Irina I. Gavrilova — Research Fellow

Saint-Petersburg



V. A. Manakhov
Peter the Great St.Petersburg Polytechnic University
Russian Federation

Vitaly A. Manakhov — student 

Saint-Petersburg



N.  A. Nesterova
Institute of Macromolecular Compounds of the RAS
Russian Federation

Nesterova Natalya Aleksandrovna — Researcher 

Saint-Petersburg



A. A. Shtro
Smorodintsev Research Institute of Influenza
Russian Federation

Anna A. Shtro — Ph. D. in Biology, Head of the Laboratory of Chemotherapy of Viral Infections

Saint-Petersburg



E. F. Panarin
Institute of Macromolecular Compounds of the RAS
Russian Federation

Evgeniy F. Panarin — D. Sc. in Chemistry, Professor, Corresponding Member of the Russian Academy of Sciences, Scientific Director

Saint-Petersburg



References

1. Baker R.E., Mahmud A.S., Miller I.F. et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022; 20 (4): 193–205. doi: 10.1038/s41579-021-00639-z.

2. Bloom D.E., Cadarette D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front Immunol. 2019; 10 (MAR). doi: 10.3389/fimmu.2019.00549.

3. Gordon A., Reingold A. The Burden of influenza: a complex problem. Curr Epidemiol Rep. 2018; 5 (1): 1–9. doi: 10.1007/s40471-018-0136-1.

4. Zimmerman R.K., Balasubramani G.K., D’Agostino H.E.A. et al. Population-based hospitalization burden estimates for respiratory viruses, 2015–2019. Influenza Other Respir Viruses. 2022; 16 (6): 1133–1140. doi: 10.1111/irv.13040.

5. Geoghegan S., Erviti A., Caballero M.T. et al. Mortality due to respiratory syncytial virus. Burden and risk factors. Am J Respir Crit Care Med. 2017; 195 (1): 96–103. doi: 10.1164/rccm.201603-0658OC.

6. Branche A., Falsey A. Parainfluenza Virus Infection. Semin Respir Crit Care Med. 2016; 37 (04): 538–554. doi: 10.1055/s-0036-1584798.

7. Edwards K.M., Zhu Y., Griffin M.R. et al. Burden of Human Metapneumovirus Infection in Young Children. N Engl J Med. 2013; 368 (7): 633–643. doi: 10.1056/NEJMoa1204630.

8. Looker K.J., Magaret A.S., May M.T. et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One. 2015; 10 (10): e0140765. doi: 10.1371/journal.pone.0140765.

9. Badur S., Öztürk S., Pereira P. et al. Systematic review of the rotavirus infection burden in the WHO-EMRO region. Hum Vaccin Immunother. 2019; 15 (11): 2754–2768. doi: 10.1080/21645515.2019.1603984.

10. Mao Q., Wang Y., Yao X. et al. Coxsackievirus A16. Hum Vaccin Immunother. 2014; 10 (2): 360–367. doi: 10.4161/hv.27087.

11. Jiao Y., Han T., Qi X. et al. Human rotavirus strains circulating among children in the capital of China (2018–2022) predominance of G9P[8] and emergence ofG8P[8]. Heliyon. 2023; 9 (8): e18236. doi: 10.1016/j.heliyon.2023.e18236.

12. Mcclellan K., Perry C.M., Aoki F.Y., Fleming D.M., Sidwell R.W., Treanor J.J. Oseltamivir a review of its use in influenza. Drugs. 2001; 61 (2): 263–283. doi: 10.2165/00003495-200161020-00011.

13. Kataev V.E., Garifullin B.F. Antiviral nucleoside analogs. Chem Heterocycl Compd (N Y). 2021; 57 (4): 326–341. doi: 10.1007/s10593-021-02912-8.

14. Mohd I., Arora K.M, Asdaq S.M.B. et al. Discovery, development, and patent trends on molnupiravir: a prospective oral treatment for COVID-19. Molecules. 2021; 26 (19): 5795. doi: 10.3390/molecules26195795.

15. Zhang L.Q., Chen K.X., Li Y.M. Bioactivities of natural catalpol derivatives. Curr Med Chem. 2019; 26 (33): 6149–6173. doi: 10.2174/0929867326666190620103813.

16. Kultys A. Sulfur-containing polymers. In: Encyclopedia of polymer science and technology. 2010; 67.

17. Schepler H., Wang X., Neufurth M., Wang S., Schröder H.C., Müller W.E.G. The therapeutic potential of inorganic polyphosphate: A versatile physiological polymer to control coronavirus disease (COVID-19). Theranostics. 2021; 11 (13): 6193–6213. doi: 10.7150/thno.59535.

18. Yang S., Pannecouque C., Herdewijn P. Synthesis, and in vitro enzymatic and antiviral evaluation of d4t polyphosphate derivatives as chain terminators. Chem Biodivers. 2012; 9 (10): 2186–2194. doi: 10.1002/cbdv.201200250.

19. De Clercq E. New Perspectives for the treatment of HIV infections. Collect Czechoslov Chem Commun. 1998; 63 (4): 449–479. doi: 10.1135/cccc19980449.

20. Bianculli R.H., Mase J.D., Schulz M.D. Antiviral polymers: past approaches and future possibilities. Macromolecules. 2020; 53 (21): 9158–9186. doi: 10.1021/acs.macromol.0c01273.

21. Schandock F., Riber C.F., Röcker A. et al. Macromolecular antiviral agents against zika, ebola, sars, and other pathogenic viruses. Adv Healthc Mater. 2017; 6 (23). doi: 10.1002/adhm.201700748.

22. Anderson R.A., Feathergill K., Diao X. et al. Evaluation of poly(styrene-4sulfonate) as a preventive agent for conception and sexually transmitted diseases. J Androl. 2000; 21 (6): 862–875. doi: 10.1002/j.1939-4640.2000.tb03417.x.

23. Kontarov N.A., Ermakova A.A., Grebenkina N.S., Jyuminova N.V., Zverev V.V. Izuchenie protivovirusnoj aktivnosti polielektrolitov v otnoshenii virusa grippa. Voprosy Virusologii. 2015; 60 (4): 5–9. (in Russian)]


Review

For citations:


Razgulyaeva D.N., Klabukov A.M., Galochkina A.V., Garshinina A.V., Zhuravskaya O.N., Gavrilova I.I., Manakhov V.A., Nesterova N.A., Shtro A.A., Panarin E.F. Evaluation of the Antiviral Activity of Drugs from the Group of Polymer Electrolyte Derivatives against a Wide Range of Viruses. Antibiot Khimioter = Antibiotics and Chemotherapy. 2023;68(9-10):34-41. (In Russ.) https://doi.org/10.37489/0235-2990-2023-68-9-10-34-41

Views: 490


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)