Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Antibacterial and antibiofilm activity of N-aryl derivatives of benzimidazole, benzotriazole and their hybrids

https://doi.org/10.37489/0235-2990-2024-69-1-2-15-22

EDN: EETRYB

Abstract

Background. The growing number of multidrug-resistant bacterial strains causing intractable infectious diseases has become one of the serious problems of the 21st century. Therefore, new drugs that act against resistant microorganisms are urgently needed.

The aim of the study. Comparison of the ability to inhibit the growth and formation of biofilms of Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa, Escherichia coli bacteria with compounds containing one or two pharmacophore polyazaheterocycles.

Material and methods. The antibacterial activity of polyazaheterocycles was evaluated by serial dilution at a concentration of 31.25–1000 µg/ml against planktonic forms and biofilms of Pseudomonas aeruginosa PAO1, Escherichia coli AB1157, and Bacillus subtilis BKM B-407. The minimum inhibitory concentration (MIC₅₀) was defined as the concentration of the test compound that suppresses bacterial growth by 50% after 24 hours of incubation. Trifluoromethylbenzene derivatives containing benzimidazole and/or benzotriazole cycles were used as test compounds.

Results. The antibacterial and antibiofilm activity of N-aryl derivatives of benzimidazole, benzotriazole and hybrids based on them were studied. Compounds containing the benzimidazole cycle had a greater antibacterial effect compared to analogues with a benzotriazole fragment. New hybrid materials are capable of inhibiting bacterial pathogenicity factors, such as the ability to form biofilms. The presence of a methyl and trifluoromethyl substituent in the second position of benzimidazole enhanced the antibiofilm activity of the hybrid molecule.

Conclusion. The presence of a benzimidazole cycle in the compound is a prerequisite for the manifestation of high antimicrobial activity. The synergism of the action of two azaheterocycles — benzimidazole and benzotriazole — in a hybrid compound on bacterial biofilm formation, which is an important virulence determinant, was observed. The resulting hybrid substances are promising compounds for the development of new antibacterial drugs against resistant bacteria.

 
 
 

About the Authors

R.  S. Begunov
P. G. Demidov Yaroslavl State University
Russian Federation

Roman S. Begunov — Ph. D. in Chemistry, Associate Professor; Associate Professor of the Faculty of Biology and Ecology

14 Sovetskaya st., P. G. Demidov Yaroslavl State University, Yaroslavl, 150003 



D. O. Egorov
P. G. Demidov Yaroslavl State University
Russian Federation

Dmitry O. Egorov — Laboratory assistant, Postgraduate student, Faculty of Biology and Ecology

Yaroslavl



A. V. Chetvertakova
P. G. Demidov Yaroslavl State University
Russian Federation

Anna V. Chetvertakova — Student, Faculty of Biology and Ecology

Yaroslavl



A. I. Khlopotinin
P. G. Demidov Yaroslavl State University
Russian Federation

Alexander I. Khlopotinin — Laboratory assistant, Postgraduate student, Faculty of Biology and Ecology

Yaroslavl

   


L. I. Savina
P. G. Demidov Yaroslavl State University
Russian Federation

Luisa I. Savina — Student, Faculty of Biology and Ecology

Yaroslavl

   


V. A. Vinogradova
P. G. Demidov Yaroslavl State University
Russian Federation

Veronika A. Vinogradova — Student, Faculty of Biology and Ecology

Yaroslavl

   


A. A. Zubishina
P. G. Demidov Yaroslavl State University
Russian Federation

Alla A. Zubishina — Ph. D. in Biology, Associate Professor, Faculty of Biology and Ecology

Yaroslavl

   


References

1. Durand G.A., Raoult D., Dubourg G. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents. 2019; 53 (4): 371–382. doi: 10.1016/j.ijantimicag.2018.11.010.

2. Bloom D.E., Cadarette D. Infectious Disease threats in the twenty-first century: strengthening the global response. Front Immunol. 2019; 10. doi: 10.3389/fimmu.2019.00549.

3. de Oliveira Santos J.V., da Costa Júnior S.D., de Fátima Ramos dos Santos Medeiros S.M., Cavalcanti I.D.L., de Souza J.B., Coriolano D.L .et al. Panorama of bacterial infections caused by epidemic resistant strains. Curr Microbiol. 2022; 79 (6): 175. doi.org/10.1007/s00284-022-02875-9.

4. Tevyashova A.N., Olsufyeva E.N., Preobrazhenskaya M.N. Design of dual action antibiotics as an approach to search for new promising drugs. Russian Chemical Reviews. 2015; 84 (1): 61–97 doi: https://doi.org/10.1070/RCR4448. (in Russian)]

5. Yin W., Wang Y., Liu L., He J. Biofilms: The microbial «Protective Clothing» in extreme environments. Int J Mol Sci. 2019 Jul 12; 20 (14): 3423. doi: 10.3390/ijms20143423.

6. Gupta P., Sarkar S., Das B., Bhattacharjee S., Tribedi P. Biofilm, pathogenesis and prevention — a journey to break the wall: a review. Arch Microbiol. 2016; 198: 1–15. doi: 10.1007/s00203-015-1148-6.

7. Del Pozo J.L. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018; 16 (1): 51–65. doi: 10.1080/14787210.2018.1417036.

8. Tangadanchu V.K.R., Sui Y.F., Zhou C.H. Isatin-derived azoles as new potential antimicrobial agents: Design, synthesis and biological evaluation. Bioorg Med Chem Lett. 2021; 41: 128030. doi: 10.1016/j.bmcl.2021.128030.

9. Malasala S., Ahmad M.N., Akunuri R., Shukla M., Kaul G., Dasgupta A. et al. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur J Med Chem. 2021; 212: 112996. doi: 10.1016/j.ejmech.2020.112996. Epub 2020 Nov 6.

10. Karaca Gençer H., Acar Çevik U., Levent S., Sağlık B., Korkut B., Özkay Y. et al. New benzimidazole-1,2,4-triazole hybrid compounds: synthesis, anticandidal activity and cytotoxicity evaluation. Molecules. 2017 Mar 27; 22 (4): 507. doi: 10.3390/molecules22040507.

11. Aitha S., Thumma V., Ambala S., Matta R., Panga S., Pochampally J. Bis 1, 2, 3-triazoles linked deoxybenzoin hybrids as antimicrobial agents: synthesis, in vitro and in silico screening. ChemistrySelect. 2023; 8 (13). doi: https://doi.org/10.1002/slct.202300405.

12. Nidhi Jangir, Poonam, Surbhi Dhadda, Dinesh K. Jangid. Recent advances in the synthesis of five- and six-membered heterocycles as bioactive skeleton: A concise overview. ChemistrySelect. 2022; 7 (6). doi: https://doi.org/10.1002/slct.202103139.

13. Tarasenko M.V., Sidneva V.V., Belova A.S., Romanycheva A., Sharonova T., Baykov S.V. et al. An efficient synthesis and antimicrobial evaluation of 5-alkenyl- and 5-styryl-1,2,4-oxadiazoles. Arkivoc. 2018; 2018 (7): 458–470. doi: https://doi.org/10.24820/ark.5550190.p010.760.

14. Begunov R.S., Egorov D.O., Chetvertakova A.V., Savina L.I., Zubishina A.A. Antibacterial activity of the halogen- and nitro derivatives of benzimidazole against Bacillus subtilis. Antibiot Khimioter = Antibiotics and Chemotherapy. 2023; 68 (3–4): 19–24. doi: https://doi.org/1010.37489/0235-2990-2023-68-3-4-19-24. (in Russian)]

15. Shah K., Chhabra S., Shrivastava S.K., Mishra P. Benzimidazole: a promising pharmacophore. Med Chem Res. 2013; 22 (11): 5077–104. doi: 10.1007/s00044-013-0476-9.

16. Mahurkar N.D., Gawhale N.D., Lokhande M.N., Uke S.J., Kodape M.M. Benzimidazole: A versatile scaffold for drug discovery and beyond — a comprehensive review of synthetic approaches and recent advancements in medicinal chemistry. Results in Chemistry. 2023; 6: 101139. doi: https://doi.org/1010.1016/j.rechem.2023.101139.

17. Champa R., Vishnumurthy K.A., Bodke Y.D., Bhojya Naik H.S., Pushpavathi I., Meghana P. et al. Synthesis, characterization, and biological investigations of potentially bioactive heterocyclic compounds containing benzimidazole nucleus. Results in Chemistry. 2023; 6: 101018. doi: https://doi.org/1010.1016/j.rechem.2023.101018.

18. Sivakumar R., Pradeepchandran R., Jayaveera K.N., Kumarnallasivan P., Vijaianand P.R., Venkatnarayanan R. Benzimidazole: an attractive pharmacophore in medicinal chemistry Int. J. Pharm. Res. 2011; 3 (3): 19–31. doi: https://doi.org/10.5772/intechopen.101942.

19. Pullagura M Krishna Prasad, Avdhut Kanvinde S., Raja S. Potent biological agent benzimidazole–a review. J Pharm Pharm Sci. 2016; 8 (12): 22. doi: 10.22159/ijpps.2016v8i12.14949.

20. Vitaku E., Smith D.T., Njardarson J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014; 57 (24): 10257–74. doi: 10.1021/jm501100b.

21. Ates-Alagoz Z. Antimicrobial Activities of 1-H-benzimidazole-based molecules. Curr. Top. Med. Chem. 2016; 16 (26): 2953–2962. doi: 10.2174/1568026616666160506130226.

22. Bansal Y., Kaur M., Bansal G. Antimicrobial potential of benzimidazole derived molecules. Mini Rev Med Chem. 2019; 19 (8): 624–646. doi: 10.2174/1389557517666171101104024.

23. Milošević N.P., Dimova V.B., Perišić-Janjić N.U. RP TLC data in correlation studies with in silico pharmacokinetic properties of benzimidazole and benztriazole derivatives. Eur J Pharm Sci. 2013; 49 (1): 10–17. doi: 10.1016/j.ejps.2013.01.018.

24. Czerwonka G., Gmiter D., Guzy A., Rogala P., Jabłońska-Wawrzycka A., Borkowski A. et al. A benzimidazole-based ruthenium (IV) complex inhibits Pseudomonas aeruginosa biofilm formation by interacting with siderophores and the cell envelope, and inducing oxidative stress. Biofouling. 2019; 35 (1): 59–74. doi: 10.1080/08927014.2018.1564818.

25. Sambanthamoorthy K., Gokhale A.A., Lao W., Parashar V., Neiditch M.B., Semmelhack M.F. et al. Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother. 2011; 55 (9): 4369–78. doi: 10.1128/aac.00583-11.

26. Srinivasarao S., Nandikolla A., Nizalapur S., Yu T.T., Pulya S., Ghosh B. et al. Design, synthesis and biological evaluation of 1,2,3-triazole based 2aminobenzimidazoles as novel inhibitors of LasR dependent quorum sensing in Pseudomonas aeruginosa. RSC Advances. 2019; 9 (50): 29273–92. doi: 10.1039/c9ra05059k.

27. Starkey M., Lepine F., Maura D., Bandyopadhaya A., Lesic B., He J. et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS pathogens. 2014; 10 (8). doi: 10.1371/journal.ppat.1004321.

28. Zaitseva Yu.V., Egorov D.O., Begunov R.S., Khlopotinin A.I. Antibacterial and antibiofilm activity of polyfunctional benzimidazole derivatives. Acta biomedica scientifica. 2022; 7 (3): 134–141. doi: https://doi.org/10.29413/ABS.2022-7.3.14. (in Russian)]

29. Mendogralo E.Y., Nesterova L.Y., Nasibullina E.R., Shcherbakov R.O., Myasnikov D.A., Tkachenko A.G. et al. Synthesis, antimicrobial and antibiofilm activities, and molecular docking investigations of 2-(1H-Indol3-yl)-1H-benzo[d]imidazole derivatives. Molecules. 2023; 28 (20): 7095. doi: 10.3390/molecules28207095.

30. Earl A.M., Losick R., Kolter R. Ecology and genomics of Bacillus subtilis. Trends in Microbiology. 2008; 16 (6): 269–275. doi: 10.1016/j.tim.2008. 03.004.

31. Sizentsov A.N., Bliyalkina D.K., Galaktionova L.V., Salnikova E.V. Evaluation of resistance of isolated soil strains of Bacillus subtilis to antibacterial drugs on the example of amoxicillin and ceftriaxone. Agrarian Science. 2022; 1 (7–8): 74–79. doi: https://doi.org/10.32634/0869-8155-2022-361-7-8-74-79. (in Russian)]

32. Yenikeyev R.R., Tatarinova N.Y., Zakharchuk L.M. Mechanisms of resistance to clinically significant antibiotics of strains of bacteria of the genus Bacillus isolated from samples delivered from the International Space Station. Vestnik Mos_kovskogo Universiteta. Seriya 16. Biologiya. 2020; 75 (4): 265–272. https://vestnikbio-msu.elpub.ru/jour/article/view/937. (in Russian)].

33. Li D., Zhang L., Liang J., Deng W., Wei Q., Wang K. Biofilm formation by Pseudomonas aeruginosa in a novel septic arthritis model. Front Cell Infect Microbiol. 2021; 11: 724113. doi: 10.3389/fcimb.2021.724113.

34. Pang Z., Raudonis R., Glick B.R., Lin T.J., Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019; 37 (1): 177–192. doi: 10.1016/j.biotechadv.2018.11.013.

35. Moser C., Jensen P.Ø., Thomsen K., Kolpen M., Rybtke M., Lauland A.S., et al. Immune responses to Pseudomonas aeruginosa biofilm infections. Front Immunol. 2021; 12: 625597. doi: 10.3389/fimmu.2021.625597.

36. Rensing C. Pseudomonas: Genomics and Molecular Biology. Microbe Magazine. 2008; 3 (9): 437–438. doi: 10.1128/microbe.3.437.2.

37. Grimwood K., Kyd J.M., Owen S.J., Massa H.M., Cripps A.W. Vaccination against respiratory Pseudomonas aeruginosa infection. Hum Vaccin Immunother. 2015; 11 (1): 14–20. doi: 10.4161/hv.34296.

38. LoVullo E.D., Schweizer H.P. Pseudomonas aeruginosa mexT is an indicator of PAO1 strain integrity. J Med Microbiol. 2020; 69 (1): 139–145. doi: 10.1099/jmm.0.001128.

39. Lee S.Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 1996; 14 (3): 98–105. doi: 10.1016/0167-7799 (96)80930-9.

40. Kobayashi T., Ikeda M., Okada Y., Higurashi Y., Okugawa S., Moriya K. Clinical and microbiological characteristics of recurrent Escherichia coli bacteremia. Microbiol Spectr. 2021; 9 (3): e0139921. doi: 10.1128/Spectrum.01399-21.

41. Uslan D.Z., Crane S.J., Steckelberg J.M., Cockerill F.R. 3rd, St Sauver J.L., Wilson W.R. et al. Age- and sex-associated trends in bloodstream infection: a population-based study in Olmsted County, Minnesota. Arch Intern Med. 2007; 167 (8): 834–839. doi: 10.1001/archinte.167.8.834.

42. Skogberg K., Lyytikäinen O., Ruutu P., Ollgren J., Nuorti J.P. Increase in bloodstream infections in Finland, 1995–2002. Epidemiol Infect. 2008; 136 (1): 108–114. doi: 10.1017/S0950268807008138.

43. Köhler C.D., Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol. 2011; 301: 642–647. doi: 10.1016/j.ijmm. 2011.09.006.

44. Sharma G., Sharma S., Sharma P., Chandola D., Dang S., Gupta S., Gabrani R. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 2016; 121: 309–319. doi: 10.1111/jam.13078.

45. Poirel L., Madec J.Y., Lupo A., Schink A.K., Kieffer N., Nordmann P., Schwarz S. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. doi: 10.1128/microbiolspec.ARBA0026-2017.

46. Souza R.S.S., Almeida M.C., Manoel C.V., Santos-Filho S.D., Fonseca A.S., Filho M.B. Biological effects of an aqueous extract of Salix alba on the survival of Escherichia coli AB1157 cultures submitted to the action of stannous chloride. Biol Res. 2009; 42 (2): 199–203. doi: 10.4067/s071697602009000200008.

47. Betageri R., Zhang Y., Zindell R., Kuzmich D., Kirrane T.M., Jörg Bentzien, et al. Trifluoromethyl group as a pharmacophore: Effect of replacing a CF3 group on binding and agonist activity of a glucocorticoid receptor ligand. Bioorganic & Medicinal Chemistry Letters. 2005; 15 (21): 4761–4769. doi: 10.1016/j.bmcl.2005.07.025.

48. Apraku J., Okoro C.O. Design, synthesis and anticonvulsant evaluation of fluorinated benzyl amino enaminones. Bioorg. Med. Chem. 2019; 27 (1): 161–166. doi: 10.1016/j.bmc.2018.11.033.

49. Cindrić M., Perić M., Kralj M., Martin-Kleiner I., David-Cordonnier MH., Paljetak H.Č. et al. Antibacterial and antiproliferative activity ofnovel 2-benzimidazolyl- and 2-benzothiazolyl-substituted benzo[b]thieno-2carboxamides. Mol Divers. 2018; 22 (3): 637–646. doi: 10.1007/s11030018-9822-7.

50. Kahlmeter G., Brown D. F. J., Goldstein F. W., MacGowan A. P., Mouton J. W. et al. European committee on antimicrobial susceptibility testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clinical Microbiology and Infections. 2006; 12 (6): 501–503. doi: 10.1111/j.14690691.2006.01454.x.

51. Terzi H.A., Kulah C., Ciftci İ.H. The effects of active efflux pumps on antibiotic resistance in Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2014; 30 (10): 2681–2687. doi: 10.1007/s11274-014-1692-2.

52. Berrazeg M., Jeannot K., Ntsogo Enguéné V.Y., Broutin I., Loeffert S., Fournier D. et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother. 2015; 59 (10): 6248–6255. doi: 10.1128/aac.00825-15.


Review

For citations:


Begunov R.S., Egorov D.O., Chetvertakova A.V., Khlopotinin A.I., Savina L.I., Vinogradova V.A., Zubishina A.A. Antibacterial and antibiofilm activity of N-aryl derivatives of benzimidazole, benzotriazole and their hybrids. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(1-2):15-22. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-1-2-15-22. EDN: EETRYB

Views: 730


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)