Screening of Antibacterial and Antifungal Activities of Basidiomycetes Extracts
https://doi.org/10.37489/0235-2990-2024-69-5-6-11-18
Abstract
Background. Basidiomycetes have high biosynthetic capabilities. Their metabolites are capable of exhibiting antimicrobial properties, thereby being promising molecules for use in medicine or for further chemical transformation. The aim of the work. Evaluation of antibacterial and antifungal properties of culture liquid of basidiomycetes from the orders Agaricales and Polyporales, selection of active strains for further research. Materials and methods. The objects of the study were 10 strains of 10 basidiomycetes species from the orders Agaricales and Polyporales. Filtrates of culture liquids obtained as a result of submerged cultivation of fungi, their ethyl acetate extracts and post-extraction liquids were tested. The culture liquid of Fomitopsis betulina was also extracted with chloroform and butanol. Antibacterial and antifungal effects were studied by diffusion from wells into agar. Results. All the studied strains of basidiomycetes showed antibacterial activity. The highest activity against gram-positive and gram-negative bacteria was observed in strains of 3 species from the order Polyporales: Fomes fomentarius, F. betulina and F. pinicola. Antifungal activity was shown by 6 out of 10 studied cultures of basidiomycetes. The comparative series of extractants compiled by their effectiveness (ethyl acetate > butanol > chloroform) testified to the advantage of using polar solvents to extract antimicrobial metabolites of F. betulina from the its culture liquid. Conclusion. Three promising strains of basidiomycetes — producers of antimicrobial metabolites were selected.
Among the studied species, representatives of the order Polyporales showed the greatest activity. Polar solvents extracted antimicrobial metabolites of F. betulina from its culture liquid more efficiently than non-polar chloroform. The obtained results demonstrate the ability of basidiomycetes to produce metabolites with antimicrobial properties. It is noted that species of the order Polyporales are more active than representatives of Agaricales.
About the Authors
V. S. LysakovaRussian Federation
Valeria S. Lysakova — Junior Researcher at the Laboratory of Biosynthesis of Biologically Active Substances
Moscow
O. N. Sineva
Russian Federation
Olga N. Sineva — Ph. D. in Biology, Researcher at the Laboratory of Taxonomic Study and Collection of Microorganism Cultures
Moscow
O. P. Bychkova
Russian Federation
Olga P. Bychkova — Ph. D. in Biology, Senior Researcher at the Laboratory for the Development of Methods for Searching for Biologically Active Compounds
Moscow
L. M. Krasnopolskaya
Russian Federation
Larisa M. Krasnopolskaya — D. Sc. in Biology, Leading researcher, Head of the Laboratory of Biosynthesis of Biologically Active Substances
Moscow
References
1. Chaturvedi V.K., Agarwal S., Gupta K.K., Ramteke P.W., Singh M.P. Medicinal mushroom: boon for thera-385 peutic applications. 3 Biotech. 2018; 8: 334, doi:10.1007/s13205-018-1358-0.
2. Narayanan Z., Glick B.R. Secondary metabolites produced by plant growth-promoting bacterial endophytes. Microorganisms. 2022; 10(10): 2008. doi: 10.3390/microorganisms10102008.
3. Klančnik A., Megušar P., Sterniša M., Jeršek B., Bucar F., Smole Možina S. et al. Aqueous extracts of wild mushrooms show antimicrobial and antiadhesion activities against bacteria and fungi. Phytotherapy Research. 2017; 31(12): 1971–6. doi: 10.1002/ptr.5934.
4. Dokhaharani S.C., Ghobad-Nejhad M., Moghimi H., Farazmand A., Rahmani H. Biological activities of two polypore macrofungi (Basidiomycota) and characterization of their compounds using HPLC-DAD and LCESI-MS/MS. Folia Microbiologica. 2021; 66: 775-786. doi:10.1007/s12223021-00884-y.
5. Ranadive K.R., Belsare M.H., Deokule S.S., Jagtap N.V., Jadhav H.K., Vaidya J.G. Glimpses of antimicrobial activity of fungi from World. J New Biol Rep. 2013; 2: 142–162.
6. Udu-Ibiam O. E., Ogbu O., Nworie O., Ibiam U.A., Agah M.V. et al. Antimicrobial activities of some selected edible mushrooms and spices against clinical isolates from Federal University Teaching Hospital Abakaliki (FETHA), Ebonyi State, Nigeria. International Journal of Scientific and Technology Research. 2014; 3: 251–255.
7. Lysakova V.S., Barashkova A.S., Rogozhin E.A., Kuvarina A.E., Sadykova V.S., Krasnopolskaya L. M. Screening of fungal metabolites from Basidiomycota and Ascomycota departments with antibiotic properties. // Science in the interpretation of the modern educational process. 2022; 36–38 (in Russian)
8. Lysakova V.S., Barashkova A.S., Rogozhin E.A., Sineva O.N., Krasnopolskaya L.M. Screening of metabolites of basidiomycetes and ascomycetes with antifungal and antibacterial activities. // Modern Mycology in Russia. Materials of the 5th Congress of Mycologists of Russia. Moscow: National Academy of Mycology. 2022; 9: 393–394 (in Russian)
9. Chepkirui C., Yuyama K.T., Wanga L.A., Decock C., Matasyoh J.C., Abraham W-R. et al. Microporenic Acids A-G, biofilm inhibitors, and antimicrobial agents from the basidiomycete microporus species. Journal of Natural Products [Internet]. 2018; 81(4): 778–784. doi: 10.1021/acs.jnatprod.7b00764.
10. Wu H., Yang H-X., Li Z-H., Feng T., Liu J-K. Psathyrellins A-E, antibacterial guanacastane diterpenoids from mushroom Psathyrella candolleana. Natural Products and Bioprospecting. 2021; 11(4): 447–452. doi: 10.1007/s13659-021-00316-x.
11. Smania E.F.A, Delle Monache F., Smania A., Yunes R.A., Cuneo R.S. Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia. 2003; 74(4): 375–377. doi: 10.1016/s0367326x(03)00064-9.
12. Woo E-E., Ha L.S., Kim J-Y., Lee I-K., Yun B-S. Rhizophins A and B, new sesquiterpenes from the culture broth of Coprinus rhizophorus. J Antibiot (Tokyo). 2019; 73(3): 175–178. doi: 10.1038/s41429-019-0263-z.
13. Wang H., Ng T.B. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides. 2006; 27(1): 27–30. doi: 10.1016/j.peptides.2005.06.009.
14. Wang H., Ng T.B. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides. 2004; 25 (1): 1–5. doi: 10.1016/j.peptides.2003.11.014
15. Garádi Z., Dékány M., Móricz Á.M., Gaál A., Papp V., Béni S. et al. Antimicrobial, antioxidant and antiproliferative secondary metabolites from inonotus nidus-pici. Molecules. 2021; 26 (18): 5453. doi: 10.3390/molecules26185453.
16. Béni Z., Dékány M., Kovács B., Csupor-Löffler B., Zomborszki Z., Kerekes E. et al. Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinella atrotomentosa. Molecules. 2018; 23(5): 1082. doi: https://doi.org/10.3390/molecules23051082.
17. Krasnopolskaya L.M., Belitsky I.V., Fedorova G.B., Katrukha G.S. Pleurotus djamor: cultivation methods and antimicrobial properties. Mic and phytopathol. 2001; 35(1): 62–67. (in Russian)
18. Park G., Nam J., Kim J., Song J., Kim P.I., Min H.J. et al. Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens. Bulletin of the Korean Chemical Society. 2019; 40(7): 704–709. doi: https://doi.org/10.1002/bkcs.11757.
19. Inostroza A., Lara L., Paz C., Perez A., Galleguillos F., Hernandez V. et al. Antibiotic activity of Emerimicin IV isolated from Emericellopsis minima from Talcahuano Bay, Chile. Natural Product Research. 2017; 3; 32 (11): 1361–1364. doi: 10.1080/14786419.2017.1344655.
20. Liu Y., Liu W., Li M., Yuan T. Lanostane triterpenoids from the fruiting bodies of Fomitopsis pinicola and their anti-inflammatory activities. Phytochemistry. 2022, 193: 112985. doi: 10.1016/j.phytochem.2021.112985.
21. Kao C. H., Greenwood D. R., Jamieson S. M., Coe M. E., Murray P. M., Ferguson L. R. et. al. Anticancer characteristics of Fomitopsis pinicola extract in a xenograft mouse model — A preliminary study. Nutrition and Cancer. 2020; 72(4): 645–652.
22. Pleszczyńska M., Lemieszek M. K., Siwulski M., Wiater A., Rzeski W., Szczodrak J. Fomitopsis betulina (formerly Piptoporus betulinus): the Iceman’s polypore fungus with modern biotechnological potential. World J Microbiol Biotechnol. 2017; 33: 1–12. doi: 10.1007/s11274-0172247-0.
23. Cheng X., Ji Y., Li X., Wang Z., Wang B., He F., Xue S. The beneficial effects of Fomitopsis pinicola chloroform extract on a dextran sulfate sodiuminduced ulcerative colitis mice model. Ann Transl Med. 2023, 11 (2). doi: 10.21037/atm-22-5143.
24. Alvandi H., Hatamian-Zarmi A., Ebrahimi Hosseinzadeh B., MokhtariHosseini Z. B. Optimization of production conditions for bioactive polysaccharides from Fomes fomentarius and investigation of antibacterial and antitumor activities. Iranian Journal of Medical Microbiology. 2020, 14 (6): 596–611. doi: https://doi.org/10.30699/ijmm.14.6.596.
25. Dresch P., Rosam K., Grienke U., Rollinger J. M., Peintner U. Fungal strain matters: colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus. Amb Express. 2015; 5(1): 1-14. doi: 10.1186/s13568-014-0093-0.
26. Schlegel B., Luhmann U., Härtl A., Gräfe U. Piptamine, a new antibiotic produced by Piptoporus betulinus Lu 9-1. J Antibiotics (Tokyo). 2000, 53 (9): 973–974. doi: 10.7164/antibiotics.53.973.
Review
For citations:
Lysakova V.S., Sineva O.N., Bychkova O.P., Krasnopolskaya L.M. Screening of Antibacterial and Antifungal Activities of Basidiomycetes Extracts. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(5-6):11-18. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-5-6-11-18