Preview

Антибиотики и Химиотерапия

Расширенный поиск

Возможности антибактериальной терапии инфекций, вызванных карбапенемоустойчивыми Acinetobacter baumannii

https://doi.org/10.37489/0235-2990-2024-69-7-8-53-66

Аннотация

В обзоре представлены актуальные схемы терапии инфекций, ассоциированных с карбапенем-устойчивыми Acinetobacter baumannii, являющимися ведущими нозокомиальными патогенами, проявляющими множественную лекарственную устойчивость к доступным антибактериальным препаратам. На сегодняшний день широко использующиеся бета-лактамные антибиотики, в том числе карбапенемы, утратили свою эффективность в борьбе с ацинетобактерными инфекциями, а новые антибиотики остаются малодоступными для пациентов. В связи с чем единственной мерой борьбы с антибиотикорезистентностью карбапенем-устойчивых A. baumannii является оценка активности комбинированной терапии in vitro и in vivo, что представляет особый интерес для отечественных и зарубежных исследователей.

Об авторах

А. Р. Гончарова
ФГБУ «Детский научно-клинический центр инфекционных болезней ФМБА России»; ФГБОУ ВО Северо-Западный государственный медицинский университет им. И. И. Мечникова Минздрава России; ФБУН НИИ эпидемиологии и микробиологии имени Пастера
Россия

Гончарова Алина Рамилевна — лаборант-исследователь, Федеральное государственное бюджетное учреждение «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»; ассистент кафедры, Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Западный государственный медицинский университет им. И. И. Мечникова» Минздрава России; младший научный сотрудник, Федеральное бюджетное учреждение науки «Санкт-Петербургский научно-исследовательский институт эпидемиологии и микробиологии им. Пастера» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

WOS Researcher ID: JNR-9369-2023

Санкт-Петербург



В. В. Гостев
ФГБУ «Детский научно-клинический центр инфекционных болезней ФМБА России»; ФГБОУ ВО Северо-Западный государственный медицинский университет им. И. И. Мечникова Минздрава России
Россия

Гостев Владимир Валерьевич — к. б. н., старший научный сотрудник, Федеральное государственное бюджетное учреждение «Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства»; доцент кафедры, Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Западный государственный медицинский университет им. И. И. Мечникова» Минздрава России

WOS Researcher ID: P-1949-2016

Scopus Author ID: 55614534400

Санкт-Петербург



Н. Е. Гончаров
ФГБОУ ВО Северо-Западный государственный медицинский университет им. И. И. Мечникова Минздрава России; ФБУН НИИ эпидемиологии и микробиологии имени Пастера
Россия

Гончаров Никита Евгеньевич — младший научный сотрудник, Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Западный государственный медицинский университет им. И. И. Мечникова» Минздрава России; Федеральное бюджетное учреждение науки «Санкт-Петербургский научно-исследовательский институт эпидемиологии и микробиологии им. Пастера» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

WOS Researcher ID: IAQ-4804-2023

Scopus Author ID: 57225153032

Санкт-Петербург



О. С. Калиногорская
ФГБОУ ВО Северо-Западный государственный медицинский университет им. И. И. Мечникова Минздрава России
Россия

Калиногорская Ольга Серафимовна — к. м. н., научный сотрудник

WOS Researcher ID: AAW-3832-2020

Scopus Author ID: 56525317800

Санкт-Петербург



Н. С. Гладышев
НИИ морфологии человека им. академика А. П. Авцына ГНЦ РФ ФГБНУ РНЦХ им. академика Б. В. Петровского
Россия

Гладышев Никита Сергеевич — научный сотрудник

WOS Researcher ID: S-9158-2018

Scopus Author ID: 57392981200

Санкт-Петербург



Список литературы

1. Antimicrobial Resistance, Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629–655. doi: 10.1136/ebnurs-2022-103540. Online ahead of print.

2. Collaborators, G.B.D.A.R., Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022; 400 (10369): 2221–2248. doi: 10.1016/S0140-6736(22)02185-7.

3. Mea H.J., Yong P.V.C., Wong E.H. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol Res. 2021; 247: 126722. doi: 10.1016/j.micres.2021.126722.

4. Wilharm G., Skiebe E., Lopinska A. et al. On the ecology of Acinetobacter baumannii — jet stream rider and opportunist by nature. bioRxiv. 2024; 2024.01.15.572815.

5. Mancuso G., Midiri A., Gerace E., Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 2021. 10 (10): 1310. doi: 10.3390/pathogens10101310.6.

6. EUCAST. Expected Resistant Phenotypes. 2023; Available from: https://www.eucast.org/expert_rules_and_expected_phenotypes.

7. Butler M.S., Gigante V., Sati H. et al. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed. Antimicrob Agents Chemother. 2022. 66 (3): e0199121. doi: 10.1128/AAC.01991-21. Epub 2022 Jan 10.

8. Jung S.Y., Lee S.H., Lee S.Y. et al. Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: a systemic review and Bayesian network meta-analysis. Crit Care 2017; 21 (1): 319. doi: 10.1186/s13054-017-1916-6.

9. Paul M., Carrara E., Retamar P. et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect. 2022; 28 (4): 521–547. doi: 10.1016/j.cmi.2021.11.025. Epub 2021 Dec 16.

10. Tamma P.D., Aitken S.L., Bonomo R.A. et al. Infectious Diseases Society of America 2023 Guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023; ciad4228. doi: 10.1093/cid/ciad428.

11. Kanj S.S., Bassetti M., Kiratisin P. et al. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2022; 60 (3): 106633. doi: 10.1016/j.ijantimicag.2022.106633.

12. Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis. 2019; 69 (Suppl 7): S565–S575. doi: 10.1093/cid/ciz830.

13. Shields R.K., Paterson D.L., Tamma P.D. Navigating available treatment options for carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex infections. Clin Infect Dis. 2023; 76 (Suppl 2): S179–S193. doi: 10.1093/cid/ciad094.

14. Penwell W.F., Shapiro A.B., Giacobbe R.A. et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob Agents Chemother. 2015; 59(3): 1680–9. doi: 10.1128/AAC.04808-14.

15. Wang L., Chen Y., Han R., Huang Z., Zhang X., Hu F., Yang F. Sulbactam enhances in vitro activity of beta-lactam antibiotics against Acinetobacter baumannii. Infect Drug Resist, 2021. 14: p. 3971–3977. doi: 10.2147/IDR.S332160.

16. Chen H., Liu Q., Chen Z., Li C. Efficacy of sulbactam for the treatment of Acinetobacter baumannii complex infection: A systematic review and meta-analysis. J Infect Chemother. 2017; 23 (5): 278–285. doi: 10.1016/j.jiac.2017.01.005.

17. Krizova L., Poirel L., Nordmann P., Nemec A. TEM-1 beta-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J Antimicrob Chemother, 2013; 68 (12): 2786–91. doi: 10.1093/jac/dkt275.

18. Drawz S.M., Bonomo R.A. Three Decades of {beta}-lactamase inhibitors. Clin. Microbiol. Rev. 2010; 23 (1): 160–201. doi: 10.1128/CMR.00037-09.

19. Kuo S.C., Lee Y.-T, Lauderdale T.-L., et al. Contribution of Acinetobacterderived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front Microbiol. 2015; 6: 231. doi: 10.3389/fmicb.2015.00231.

20. Yang Y., Xu Q., Li T., et al. OXA-23 is a prevalent mechanism contributing to sulbactam resistance in diverse Acinetobacter baumannii clinical strains. Antimicrob Agents Chemother. 2019; 63 (1). e01676–18. doi: 10.1128/AAC.01676-18.

21. Liu J., Shu Y., Zhu F., Feng B., Zhang Z., Liu L., Wang G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drugresistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J Glob Antimicrob Resist. 2021; 24: 136–147. doi: 10.1016/j.jgar.2020.08.021.

22. Bian X., Liu X., Feng M. et al. Enhanced bacterial killing with colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2021; 57 (2): 106271. doi: 10.1016/j.ijantimicag.2020.106271.

23. Srisakul S., Wannigama D.L., Higgins P.G. et al. Overcoming addition of phosphoethanolamine to lipid A mediated colistin resistance in Acinetobacter baumannii clinical isolates with colistin-sulbactam combination therapy. Sci Rep. 2022; 12 (1): 11390. doi: 10.1038/s41598-022-15386-1.

24. Yahav D.,Giske C., Gramatniece A., Abodakpi H., Tam V.H., Leibovici L. New beta-Lactam-beta-Lactamase Inhibitor Combinations. Clin Microbiol Rev. 2020; 34 (1): e00115. doi: 10.1128/CMR.00115-20..

25. Rodriguez C.H., Brune A., Nastro M., Vay C., Famiglietti A. In vitro synergistic activity of the sulbactam/avibactam combination against extensively drug-resistant Acinetobacter baumannii. J Med Microbiol. 2020; 69 (7): 928–931. doi: 10.1099/jmm.0.001211.

26. Pasteran F., Cedano J., Baez M., et al. A new twist: the combination of sulbactam/avibactam enhances sulbactam activity against carbapenem-resistant Acinetobacter baumannii (CRAB) Isolates. Antibiotics (Basel), 2021; 10 (5): 577. doi: 10.3390/antibiotics10050577.

27. Dudoignon E., Camelena F., Lafaurie M., et al. Evolution, control and success of combination therapy with Ampicilin-sulbactam/Ceftazidime-Avibactam during a Carbapenem-Resistant Acinetobacter baumannii outbreak in burn Intensive Care Unit. Eur J Clin Microbiol Infect Dis. 2024; 43 (7): 1453–1459. doi: 10.1007/s10096-024-04840-9.

28. Cedano J., Baez M., Pasteran F. et al. Zidebactam restores sulbactam susceptibility against carbapenem-resistant Acinetobacter baumannii isolates. Front Cell Infect Microbiol. 2022; 12: 918868. doi: 10.3389/fcimb.2022.918868.

29. McLeod S.M., Donneli J.P., Narayanan N., Mills J.P., Kaye K.S. Sulbactam-durlobactam: a beta-lactam/beta-lactamase inhibitor combination targeting Acinetobacter baumannii. Future Microbiol. 2024; 19 (7)) 563–576. doi: 10.2217/fmb-2023-0248.

30. Shapiro A.B., Moussa S.H., McLeod S.M., Durand-Reville T., Miller A. Durlobactam, a new diazabicyclooctane beta-lactamase inhibitor for the treatment of acinetobacter infections in combination with sulbactam. Front Microbiol. 2021; 12: 709974. doi: 10.3389/fmicb.2021.709974.

31. Kaye K.S., Shorr A.F., Wunderink R.G. et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect Dis. 2023; 23 (9): 1072–1084. doi: 10.1016/S1473-3099(23)00184-6.

32. Giuliano S., Sbrana F., Tascini C. Sulbactam-durlobactam for infections caused by Acinetobacter baumannii-calcoaceticus complex. Lancet Infect Dis. 2023; 23 (8): e274. doi: 10.1016/S1473-3099(23)00422-X.

33. Seifert H., Muller C., Stefanic D., Higgins P.G., Miller A., Kresken M. In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2020; 75 (9): 2616–621. doi: 10.1093/jac/dkaa208.

34. Karlowsky J.A., Hackel M., McLeod S.M., Miller A. In vitro activity of Sulbactam-Durlobactam against Global Isolates of Acinetobacter baumannii-calcoaceticus Complex Collected from 2016 to 2021. Antimicrob Agents Chemother. 2022; 66 (9): e0078122. doi: 10.1128/aac.00781-22.

35. Principe L., Bella S.D., Conti J., Perilli M., Piccirilli A., Mussini C., Decorti G. Acinetobacter baumannii resistance to sulbactam/durlobactam: a systematic review. Antibiotics (Basel). 2022; 11 (12): 1793. doi: 10.3390/antibiotics11121793.

36. McLeod S.M., Carter N.M., Bradford P.A., Miller A.A. In vitro antibacterial activity of sulbactam-durlobactam in combination with other antimicrobial agents against Acinetobacter baumannii-calcoaceticus complex. Diagn Microbiol Infect Dis. 2024; 109 (3): 116344. doi: 10.1016/j.diagmicrobio.2024.116344.

37. Moussa S.H., Shapiro A.H., McLeod S.M. et al. Molecular drivers of resistance to sulbactam-durlobactam in contemporary clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2023; 67 (11): e0066523. doi: 10.1128/aac.00665-23.

38. Grossman T.H. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med, 2016; 6 (4): a025387. doi: 10.1101/cshperspect.a025387.

39. LaPlante K.L., Dhand A., Wright K., Lauterio M. Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance. Ann Med. 2022; 54 (1): 1686–1700. doi: 10.1080/07853890.2022.2085881.

40. Sun C., Yu Y., Hua X. Resistance mechanisms of tigecycline in Acinetobacter baumannii. Front Cell Infect Microbiol. 2023; 13: 1141490. doi: 10.3389/fcimb.2023.1141490.

41. Ni W., Han Y., Zhao J., Wei C., Cui J., Wang R., Liu Y. Tigecycline treatment experience against multidrug-resistant Acinetobacter baumannii infections: a systematic review and meta-analysis. Int J Antimicrob Agents, 2016; 47 (2): 107–16. doi: 10.1016/j.ijantimicag.2015.11.011.

42. Sodeifian F., Zangiabadian M., Arabpour E. et al. Tigecycline-containing regimens and multi drug-resistant Acinetobacter baumannii: a systematic review and meta-analysis. Microb Drug Resist. 2023; 29 (8): 344–359. doi: 10.1089/mdr.2022.0248.

43. Jo J., Ko K.S. Tigecycline Heteroresistance and Resistance Mechanism in Clinical Isolates of Acinetobacter baumannii. Microbiol Spectr. 2021; 9 (2): e0101021. doi: 10.1128/Spectrum.01010-21.

44. De Pascale G., Lisi L., Ciotti G.M.P., Vallecoccia M.S. et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann Intensive Care. 2020; 10 (1): 94. doi: 10.1186/s13613-020-00715-2.

45. Xie J., Roberts J.A., Alobaid A.S. et al. Population pharmacokinetics of tigecycline in critically ill patients with severe infections. Antimicrob Agents Chemother. 2017; 61 (8): e00345–17. doi: 10.1128/AAC.00345-17.

46. Kengkla K., Kongpakwattana R., Saokaew S., Apisarnthanarak A., Chaiyakunapruk N. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network meta-analysis. J Antimicrob Chemother. 2018; 73 (1): 22–32. doi: 10.1093/jac/dkx368.

47. Wu H., Feng H., He L., Zhang H., Xu P. In vitro activities of tigecycline in combination with amikacin or colistin against carbapenem-resistant Acinetobacter baumannii. Appl Biochem Biotechnol. 2021; 193 (12): 3867–3876. doi: 10.1007/s12010-021-03664-z.

48. Deng Y., Chen L., Yue M., Huang X., Yang Y., Yu H. Sulbactam combined with tigecycline improves outcomes in patients with severe multidrug-resistant Acinetobacter baumannii pneumonia. BMC Infect Dis. 2022; 22 (1): 795. doi: 10.1186/s12879-022-07778-5.

49. Greig S.L., Scott L.J. Intravenous minocycline: a review in Acinetobacter infections. Drugs. 2016; 76 (15): 1467–1476. doi: 10.1007/s40265-016-0636-6.

50. Asadi A., Abdi M., Kouhsari E. et al. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J Glob Antimicrob Resist. 2020; 22: 161–174. doi: 10.1016/j.jgar.2020.01.022.

51. Castanheira M., Mendes R.E., Jones R.N. Update on Acinetobacter species: mechanisms of antimicrobial resistance and contemporary in vitro activity of minocycline and other treatment options. Clin Infect Dis. 2014; 59: Suppl 6: S367–373. doi: 10.1093/cid/ciu706.

52. Zilberberg, M.D., Kollef M.H., Shorr A.F. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: A survey study. J Hosp Med. 2016; 11 (1): 21–26. doi: 10.1002/jhm.2477.

53. Tarnberg M., Nilsson L.E., Dowzicky M.J. Antimicrobial activity against a global collection of skin and skin structure pathogens: results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), 2010–2014. Int J Infect Dis. 2016; 49: 141–148. doi: 10.1016/j.ijid.2016.06.016. Epub 2016 Jun 22.

54. Flamm R.K., Shortridge D., Castanheira M., Sader H.S., Pfaller M.A. In vitro activity of minocycline against U.S. isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus species complex, Stenotrophomonas maltophilia, and Burkholderia cepacia complex: Results from the SENTRY Antimicrobial Surveillance Program, 2014 to 2018. Antimicrob Agents Chemother. 2019; 63 (11): e01154. doi: 10.1128/AAC.01154-19.

55. Fragkou P.C., Poulakou G., Blizou A. et al. The role of minocycline in the treatment of nosocomial infections caused by multidrug, extensively drug and pandrug resistant Acinetobacter baumannii: a systematic review of clinical evidence. microorganisms. 2019; 7 (6): 159. doi: 10.3390/microorganisms7060159.

56. Chandran S., Manokaran Y., Vijayakuma S. et al. Enhanced bacterial killing with a combination of sulbactam/minocycline against dual carbapenemase-producing Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 2023; 42 (5): 645–651. doi: 10.1007/s10096-023-04583-z.

57. Rodriguez C.H., Nastro M., Vay C., Famiglietti A. In vitro activity of minocycline alone or in combination in multidrug-resistant Acinetobacter baumannii isolates. J Med Microbiol. 2015; 64 (10): 1196–1200. doi: 10.1099/jmm.0.000147.

58. Yang,Y.S., Lee Y., Tsang K-C. et al. In vivo and in vitro efficacy of minocycline-based combination therapy for minocycline-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016; 60 (7): 4047–54. doi: 10.1128/AAC.02994-15.

59. Ku N.S., Lee S-H., Lim Y-S. et al. In vivo efficacy of combination of colistin with fosfomycin or minocycline in a mouse model of multidrug-resistant Acinetobacter baumannii pneumonia. Sci Rep. 2019; 9 (1): 17127. doi: 10.1038/s41598-019-53714-0.

60. Bowers D.R., Cao H., Zhou J. et al. Assessment of minocycline and polymyxin B combination against Acinetobacter baumannii. Antimicrob Agents Chemother. 2015; 59 (5): 2720–5. doi: 10.1128/AAC.04110-14.

61. Qu X., et al. Polymyxin B combined with minocycline: a potentially effective combination against bla (OXA-23)-harboring CRAB in in vitro PK/PD model. Molecules. 2022; 27 (3): 1085. doi: 10.3390/molecules27031085.

62. Beganovic M., Daffinee K.E., Luther M., LaPlante K. Minocycline alone and in combination with polymyxin b, meropenem, and sulbactam against carbapenem-susceptible and -resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2021; 65 (3): e01680–20. doi: 10.1128/AAC.01680-20.

63. Lee Y.R., Burton C.E. Eravacycline, a newly approved fluorocycline. Eur J Clin Microbiol Infect Dis. 2019; 38 (10): 1787–1794. doi: 10.1007/s10096-019-03590-3.

64. Solomkin J., Evans D., Slepavicius A., Lee P. et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017; 152 (3): 224–232. doi: 10.1001/jamasurg.2016.4237.

65. Solomkin J.S., Gardovskis J., Lawrence K. et al. IGNITE4: Results of a phase 3, randomized, multicenter, prospective trial of eravacycline vs meropenem in the treatment of complicated intraabdominal infections. Clin Infect Dis. 2019; 69 (6): 921–929. doi: 10.1093/cid/ciy1029.

66. Alosaimy S., Morrisette T., Laghf A.M. et al. Clinical outcomes of eravacycline in patients treated predominately for carbapenem-resistant Acinetobacter baumannii. Microbiol Spectr. 2022; 10 (5): e0047922. doi: 10.1128/spectrum.00479-22.

67. Seifert H., Stefanik D., Sutcliffe J.A., Higgins P.G. In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii. Int J Antimicrob Agents. 2018; 51 (1): 62–64. doi: 10.1016/j.ijantimicag.2017.06.022

68. Galani I., Papoutsaki V., Karaiskos N. et al. In vitro activities of omadacycline, eravacycline, cefiderocol, apramycin, and comparator antibiotics against Acinetobacter baumannii causing bloodstream infections in Greece, 2020–2021: a multicenter study. Eur J Clin Microbiol Infect Dis. 2023; 42 (7): 843–852. doi: 10.1007/s10096-023-04616-7.

69. Morrissey I., Olesky M., Hawser S., Lob S.H., Karlowsky J.A., Corey G.R., Bassetti M., Fyfe C. In vitro activity of eravacycline against gram-negative bacilli isolated in clinical laboratories worldwide from 2013 to 2017. Antimicrob Agents Chemother. 2020; 64 (3): e01699–19. doi: 10.1128/AAC.01699-19.

70. Kunz Coyne A.J., Alosaimy S., Lucas K. et al. Eravacycline, the first four years: health outcomes and tolerability data for 19 hospitals in 5 U.S. regions from 2018 to 2022. Microbiol Spectr. 2024; 12 (1): e0235123. doi: 10.1128/spectrum.02351-23.

71. Ozger H.S., Cuhadar T., Yildiz S.S., Gulmez Z.D., Dizbay M., Tunccan O.G., Kalkanci A., Simsek H., Unaldi O. In vitro activity of eravacycline in combination with colistin against carbapenem-resistant A. baumannii isolates. J Antibiot (Tokyo). 2019; 72 (8): 600–604. doi: 10.1038/s41429-019-0188-6.

72. Li Y., Cui L., Xue F., Wang Q., Zheng B. Synergism of eravacycline combined with other antimicrobial agents against carbapenemresistant Enterobacteriaceae and Acinetobacter baumannii. J Glob Antimicrob Resist. 2022; 30: 56–59. doi: 10.1016/j.jgar.2022.05.020.

73. Scott C.J., Zhu E., Jayakumar R.A., Shan G., Viswesh V. Efficacy of eravacycline versus best previously available therapy for adults with pneumonia due to difficult-to-treat resistant (DTR) Acinetobacter baumannii. Ann Pharmacother. 2022; 56 (12): 1299–1307. doi: 10.1177/10600280221085551.

74. Dahesh S., Wong B., Nizet V., Sakolas G., Tran T.T., Aitken S.L. Treatment of multidrug-resistant vancomycin-resistant Enterococcus faecium hardware-associated vertebral osteomyelitis with oritavancin plus ampicillin. Antimicrob Agents Chemother. 2019; 63 (7): e02622–18. doi: 10.1128/AAC.02622-18.

75. Nang S.C., Azad M.A.K., Velkov T., Zhou Q.T., Li J. Rescuing the last-line polymyxins: achievements and challenges. Pharmacol Rev. 2021; 73 (2): 679–728. doi: 10.1124/pharmrev.120.000020.

76. Rafailidis P., Panagopoulos P., Koutserimpas C., Samonis G. Current therapeutic approaches for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii Infections. Antibiotics (Basel). 2024; 13 (3): 261. doi: 10.3390/antibiotics13030261.

77. Huang C., Chen I., Tang T. Colistin monotherapy versus colistin plus meropenem combination therapy for the treatment of multidrug-resistant Acinetobacter baumannii infection: a meta-analysis. J Clin Med. 2022; 11 (11): 3239. doi: 10.3390/jcm11113239.

78. Shahzad S., Willcox M.D.P., Rayamajhee B. A review of resistance to polymyxins and evolving mobile colistin resistance gene (mcr) among pathogens of clinical significance. Antibiotics. 2023; 12 (11): 1597. doi: 10.3390/antibiotics12111597.

79. Martins-Sorenson N., Snesrud E., Xavier D.E. et al. A novel plasmid-encoded mcr-4.3 gene in a colistin-resistant Acinetobacter baumannii clinical strain. J Antimicrob Chemother. 2020; 75 (1): 60–64. doi: 10.1093/jac/dkz413.

80. Кузьменков А.Ю., Виноградова А.Г., Трушин И.В., Эйдельштейн М.В., Авраменко А.А., Дехнич А.В., Козлов Р.С. AMRMAP — cистема мониторинга антибиотикорезистентности в России. Клиническая микробиология и антимикробная химиотерапия. 2021; 23 (2): 198–204.

81. Tsuji B.T., Pogue J.M., Zavascki A.P. et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019; 39 (1): 10–39. doi: 10.1002/phar.2209.

82. Kaye K.S., Marchaim D., Thamlikitkul V. et al. Colistin monotherapy versus combination therapy for carbapenem-resistant organisms. NEJM Evid. 2023; 2 (1): 10.1056/evidoa2200131. doi: 10.1056/evidoa2200131.

83. Wei W., Yang H., Liu Y., Ye Y., Li J. In vitro synergy of colistin combinations against extensively drug-resistant Acinetobacter baumannii producing OXA-23 carbapenemase. J Chemother. 2016; 28 (3): 159–163. doi: 10.1179/1973947815Y.0000000030.

84. Qureshi Z.A., Hittle L., O'Hara J.A. et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis. 2015; 60 (9): 1295–1303. doi: 10.1093/cid/civ048.

85. Zhang J., Song C., Wu M. et al. Physiologically-based pharmacokinetic modeling to inform dosing regimens and routes of administration of rifampicin and colistin combination against Acinetobacter baumannii. Eur J Pharm Sci. 2023; 185: 106443. doi: 10.1016/j.ejps.2023.106443.

86. Park H.J., Cho J.H., Kim H.J., Han S.H., Jeong S.H., Byun M.K. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J Glob Antimicrob Resist. 2019; 17: 66–71. doi: 10.1016/j.jgar.2018.11.016.

87. Karruli A., Migliaccio A., Pournaras S., Durante–Mangoni E., Zarrilli R. Cefiderocol and sulbactam–durlobactam against carbapenem-resistant Acinetobacter baumannii. Antibiotics (Basel). 2023; 12 (12): 1729. doi: 10.3390/antibiotics12121729.

88. Sato T., Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019; 69 (Suppl 7): S538–S543. doi: 10.1093/cid/ciz826.

89. Karakonstantis S., Rousaki M., Kritsotakis E.I. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance. Antibiotics (Basel). 2022; 11 (6): 723. doi: 10.3390/antibiotics11060723.

90. Smoke S.M., Brophy A., Reveron S. et al. Evolution and transmission of cefiderocol-resistant Acinetobacter baumannii during an outbreak in the burn intensive care unit. Clin Infect Dis. 2023; 76 (3): e1261–e1265. doi: 10.1093/cid/ciac647.

91. Malik S., Kaminski M., Landman D., Quale J. Cefiderocol resistance in Acinetobacter baumannii: roles of beta-lactamases, siderophore receptors, and penicillin binding protein 3. Antimicrob Agents Chemother. 2020; 64 (11): e01221–20. doi: 10.1128/AAC.01221-20.

92. Karlowsky J.A., Hackel M.A., Takemura M., Yamano Y., Echols R., Sahm D.F. In vitro susceptibility of gram-negative pathogens to Cefiderocol in five consecutive annual multinational SIDERO-WT surveillance studies, 2014 to 2019. Antimicrob Agents Chemother. 2022; 66 (2): e0199021. doi: 10.1128/AAC.01990-21.

93. Bassetti M., Echols R., Matsunaga Y. et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021; 21 (2): 226–240. doi: 10.1016/S1473-3099(20)30796-9.

94. Wunderink R.G., Matsunaga Y., Ariyasu M. et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021; 21 (2): 213–225. doi: 10.1016/S1473-3099(20)30731-3.

95. Falcone M., Tiseo G., Leonidi A, Sala L., Vecchione A., Barnini S., Farcomeni A., Menichetti F. Cefiderocol-compared to colistin-based regimens for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2022; 66 (5): e0214221. doi: 10.1128/aac.02142-21.

96. Russo A., Bruni A., Borrazzo C. et al. Efficacy of cefiderocol — vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int J Antimicrob Agents. 2023; 62 (1): 106825. doi: 10.1016/j.ijantimicag.2023.106825.

97. Onorato L., de Luca I., Monari C., Coppola N. Cefiderocol either in monotherapy or combination versus best available therapy in the treatment of carbapenem-resistant Acinetobacter baumannii infections: A systematic review and meta-analysis. J Infect. 2024; 88 (3): 106113. doi: 10.1016/j.jinf.2024.01.012.

98. Gill C.M., Santini D., Takemura M., Longshaw C., Yamano Y., Echols R., Nicolau D. In vivo efficacy & resistance prevention of cefiderocol in combination with ceftazidime/avibactam, ampicillin/sulbactam or meropenem using human-simulated regimens versus Acinetobacter baumannii. J Antimicrob Chemother. 2023; 78 (4): 983–990. doi: 10.1093/jac/dkad032.

99. Lim J.S., Chai Y-Y., Ser W-X. et al. Novel drug candidates against antibiotic-resistant microorganisms: A review. Iran J Basic Med Sci. 2024; 27 (2): 134–150. doi: 10.22038/IJBMS.2023.71672.15593.

100. Plattner M., Gysin M., Haldimann K., Becker K., Hobbie S. Epidemiologic, phenotypic, and structural characterization of aminoglycosideresistance gene aac (3)-IV. Int J Mol Sci. 2020; 21 (17): 6133. doi: 10.3390/ijms21176133.

101. Juhas M., Widlake E., Teo J., Huseby D. et al. In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. J Antimicrob Chemother. 2019; 74 (4): 944–952. doi: 10.1093/jac/dky546.

102. Galani I., Souli M., Katsala D., Karaiskos I., Giamarellou H., Antoniadou A. In vitro activity of apramycin (EBL-1003) in combination with colistin, meropenem, minocycline or sulbactam against XDR/PDR Acinetobacter baumannii isolates from Greece. J Antimicrob Chemother. 2024; 79 (5): 1101–1108. doi: 10.1093/jac/dkae077.

103. Duncan L.R., Wang W., Sader H.S. In vitro potency and spectrum of the novel polymyxin MRX-8 tested against clinical isolates of gram-negative bacteria. Antimicrob Agents Chemother; 2022; 66 (5): e0013922. doi: 10.1128/aac.00139-22.

104. Buchwald P. Soft drugs: design principles, success stories, and future perspectives. Expert Opin Drug Metab Toxicol. 2020; 16 (8): 645–650. doi: 10.1080/17425255.2020.1777280.

105. Wu S., Yin D., Zhi P., Guo Y., Yang Y., Zhu D., Hu F. In vitro activity of MRX-8 and comparators against clinical isolated gram-negative bacilli in China. Front Cell Infect Microbiol. 2022; 12: 829592.

106. Qu X., Guo C., Liu S., Li X., Liu X., Zhang J. Pharmacokinetics and nephrotoxicity of polymyxin MRX-8 in rats: a novel agent against resistant gram-negative bacteria. Antibiotics (Basel). 2024; 13 (4): 354. doi: 10.3390/antibiotics13040354.

107. Li L., Tan X., Zhou T., Chi S., Zhu Y., Liu Q., Chen Y., Zhang J. In vivo efficacy and PK/PD analyses of zifanocycline (KBP-7072), an aminomethylcycline antibiotic, against Acinetobacter baumannii in a neutropenic murine thigh infection model. J Infect Chemother. 2024; 30 (1): 34–39. doi: 10.1016/j.jiac.2023.09.010.

108. Han R., Ding L., Yang Y. et al. In vitro activity of KBP-7072 against 536 Acinetobacter baumannii complex isolates collected in China. Microbiol Spectr 2022; 10 (1): e0147121. doi: 10.1128/spectrum.01471-21.

109. Huband M.D., Mendes R.E., Pfaller M.A. et al. In vitro activity of KBP-7072, a novel third-generation tetracycline, against 531 recent geographically diverse and molecularly characterized Acinetobacter baumannii species complex isolates. Antimicrob Agents Chemother. 2020; 64 (5): e02375–19. doi: 10.1128/AAC.02375-19.

110. Zampaloni C., Mattei P., Bleicher K. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature. 2024; 625 (7995): 566–571. doi: 10.1038/s41586-023-06873-0.

111. Hawser S., Kothari N., Valmont T., Louvel S. Activity of the novel antibiotic zosurabalpin (RG6006) against clinical acinetobacter isolates from China, in open forum infectious diseases. 2023; 5897–5898.


Рецензия

Для цитирования:


Гончарова А.Р., Гостев В.В., Гончаров Н.Е., Калиногорская О.С., Гладышев Н.С. Возможности антибактериальной терапии инфекций, вызванных карбапенемоустойчивыми Acinetobacter baumannii. Антибиотики и Химиотерапия. 2024;69(7-8):53-66. https://doi.org/10.37489/0235-2990-2024-69-7-8-53-66

For citation:


Goncharova A.R., Gostev V.V., Goncharov N.E., Kalinogorskaya O.S., Gladyshev N.S. Antibacterial Therapy Options for Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(7-8):53-66. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-7-8-53-66

Просмотров: 418


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)