Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Analysis of the Antibiotic Resistance Problem in the Agricultural Sector

https://doi.org/10.37489/0235-2990-2024-69-9-10-108-132

EDN: POUZCX

Abstract

Antimicrobial resistance is a major global threat to public health and development. The problem of antibiotic resistance arose as a result of widespread and uncontrolled use of antimicrobial drugs in medicine and agriculture. Antimicrobials, including antibiotics, are widely used in modern agriculture to treat animals, birds, and other domestic animals, as well as in the food industry. A decrease in the sensitivity of bacteria to certain classes of antibiotics was discovered as early as the very beginning of the antibiotic discovery era, which subsequently, in some cases, transformed into multidrug resistance. The resistance of microorganisms depends on the structure of the antibiotic and is associated with the mechanism of its antibacterial activity. The review examines the properties of various groups of antibiotics that are critically important in terms of the resistance problem, intended for the treatment, prevention, and growth stimulation of farm animals. The possibilities of using methods alternative to antibiotic therapy in veterinary medicine were also discussed.

About the Authors

E. N. Olsufyeva
Gause Institute of New Antibiotics
Russian Federation

Evgenia N. Olsufyeva — D. Sc. in Chemistry, Professor, Chief Researcher at the Laboratory of Chemical Transformation of Antibiotics

Scopus Author ID: 35595443300. WOS Research ID: B-1230-2017. РИНЦ Ausor ID: 57864

Moscow 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов при подготовки данной статьи.



V. S. Yankovskaya
Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
Russian Federation

Valentina S. Yankovskaya — D. Sc. in Technical Sciences, Associate Professor of the Department of Quality Management and Commodity Science

ResearcherID: AAR-2725-2021. AuthorID: 562520. ScopusAuthor ID: 57195148578

Moscow 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов при подготовки данной статьи.



References

1. Kirchhelle C. Pharming animals: a global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018; 4: 96–96. doi: doi.org/10.1057/s41599-018-0152-2.

2. Castanon J. I. R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poultry Science. 2007; 86 (11): 2466–2471. doi: doi.org/10.3382/ps.2007-00249.

3. Campbell W. C. History of the discovery of sulfaquinoxaline as a coccidiostat. J Parasitol. 2008; 94 (4): 934–945. doi: 10.1645/GE-1413.1.

4. Simdzhi Sh., Dul R., Kozlov R. S. Antimikrobnye preparaty. Ratsional'noe primenenie antibiotikov v zhivotnovodstve i veterinarii. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2016; 18 (3): 186–190. (in Russian)

5. McManus P. S., Stockwell V. O., Sundin G. W., Jones A. L. Antibiotic use in plant agriculture. Annu Rev Phytopathol. 2002; 40: 443–465. doi: 10.1146/annurev.phyto.40.120301.093927.

6. Kuznetsova N. M., Valishev A. A. Antibiotiki i konservanty, ispol'zuemye v myasopererabatyvayuschej promyshlennosti. Myasnaya industriya. 2018; 2: 20–21. (in Russian)

7. Ekonomika, 19:00, 14 marta 2016. https://www.interfax.ru/business/498421 (in Russian)

8. Patel S. J., Wellington M.; Shah R M., Ferreira M. J. Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, and Opportunities. Clinical Therapeutics. 2020; 42: (9): 1649-1658. doi.org/10.1016/j.clinthera.2020.07.004.

9. Van Boeckel T. P., Brower C., Gilbert M., Grenfell B. T., Levin S. A., Robinson T. P., Teillant A., Laxminarayan R. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015; 112 (18): 5649– 5654. doi: 10.1073/pnas.1503141112.

10. WHO: Antimicrobial resistance 21 November 2023. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

11. O’Neill J. Review on AMR. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. December 2014. https://wellcomecollection.org/works/rdpck35v/items.

12. Global priority list of antibiotic-resistant bacteria to guide research, discover, and development of new antibiotics. World Health Organization, 2017. https://remed.org/wp-content/uploads/2017/03/lobalpriority-list-of-antibiotic-resistant-bacteria-2017.pdf.

13. Gottlieb D. The production and role of antibiotics in soil. J Antibiot (Tokyo). 1976; 29 (10): 987–1000. doi: 10.7164/antibiotics.29.987.

14. Morgan N. K. Managing gut health without reliance on antimicrobials in poultry. Anim Prod. Sci. 2017; 57: 2270–2279. doi: 10.1071/AN17288.

15. Alekseev N. R., Shelepov I. A. Antibiotiki i Korma. Sovremennyj Fermer. 2013; 4: 48–51. (in Russian).

16. Olsufyeva E. N., Yankovskaya V. S., Dunchenko N. I. Overview of the risks of antibiotic contamination of dairy products. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2022; 67: 7–8: 82–96. doi: https://doi.org/10.37489/0235-2990-2022-67-7-8-82-96. (in Russian).

17. Маневич Б. В., Кузина Ж. И., Харитонова Е. Б., Орлова Т. В. Борьба с биоплёнками на молочных предприятиях. Молочная Промышленность, 2018; 12: 12–14.

18. Kuptsova S., Dunchenko N., Yankovskaya V., Ginzburg М., Mikhailova K. Risk analysis within the production process of fish preserves. E3S Web of Conferences: VIII International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development (AGRITECH-VIII 2023), Krasnoyarsk, 29–31 марта 2023 года. EDP Sciences: EDP Sciences, 2023; 02031. doi: https://doi.org/10.1051/e3sconf/202339002031. (in Russian)

19. Jangir P. K., Ogunlana L., Szili P., Czikkely M., Shaw L. P., Stevens E. J., Yu Y., Yang Q., Wang Y., Pál C., Walsh T. R., MacLean C. R. The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. 2023; 12: e84395. doi: 10.7554/eLife.84395.

20. Lo´pez D., Vlamakis H., Kolter R. Biofilms. Cold Spring Harb Perspect Biol. 2010; 2: 1–11. doi: 10.1101/cshperspect.a000398.

21. Parrino B., Schillaci D., Carnevale I., Giovannetti E., Diana P., Cirrincione G., Cascioferro S. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem. 2019; 161: 154178. doi: 10.1016/j.ejmech.2018.10.036.

22. Dunchenko N. I., Shchetinin M. P., Yankovskaya V. S. Upravleniye kachestvom produktsii. Pishchevaya promyshlennost′. SPb.: Lan, 2018; 244. (in Russian)

23. Shchekotikhin A. E., Olsuf'eva E. N., Yankovskaya V. S. Antibiotiki i rodstvennye soedineniya. Nauchnoe izdanie. Moscow: Laboratoriya Znanij, 2022; 511. ISBN 978-5-93208-247-8. (in Russian)

24. O’Neill J. Antimicrobials in agriculture and the environment: reducing unnecessary use and waste. The review on antimicrobial resistance. December 2015. https://wellcomecollection.org/works/x88ast2u.

25. Sarkar D. J., Mukherjee I., Shakil N. A., Rana V. S., Kaushik P., Debnath S. Antibiotics in Agriculture: Use and Impact. Ind. J. Ethnophytopharmaceuticals (IJEPP). 2018; 4 (1): 4–19.

26. Constable P., Hinchcliff K. W., Done S., Gruenberg W. Veterinary medicine. Practical antimicrobial therapeutics, 2017, 11th Edition, Saunders Ltd., 153–174. doi: https://doi.org/10.1016/b978-0-7020-5246-0.00006-1В.

27. Butaye P., Devriese L. A., Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on grampositive bacteria. Clin Microbiol Rev. 2003; 16 (2): 175–188. doi: 10.1128/CMR.16.2.175–188.2003.

28. Егоров Н. С. Основы учения об антибиотиках. М.: Издательство МГУ, 2004; 528. ISBN 5-02-033595-9. [Egorov N. S. Fundamentals of the doctrine of antibiotics. Moscow: MSU Publishing House, 2004; 528 (in Russian)]

29. Fisher J. F., Mobashery S., Miller M. J. (eds.) Antibacterials. Volume II. Topic in Medicinal Chemistry. Springer, 2018; 228. ISBN-10:ý 3319708384; ISBN-13:ý 978-3319708386

30. Walsh C. T., Wencewicz T. A. Antibiotics: challenges, mechanisms, opportunities. ASM Press, Washington, 2016; 477. ISBN: 978-1-555-81930-9.

31. Greenwood D. β-lactam antibiotics: cephalosporins. In book Antibiotic and Chemotherapy (9th ed.) 2010, 170–199. Chapter 13. Elsevier. doi: https://doi.org/10.1016/B978-0-7020-4064-1.00013-0.

32. Harada K., Irie S., Ohnishi M., Kataoka Y. Assessment of the usefulness of cefapirin and cefalonium disks for susceptibility testing of Staphylococcus aureus isolates from bovine mastitis. Antibiotics. 2020; 9 (4): 197–204. doi: 10.3390/antibiotics9040197.

33. Yang Q., Zhang C., Liu X., Zhang L., Yong K., Lv Q., Zhang Y., Chen L., Zhong P., Liu Y. The pharmacokinetics and pharmacodynamics of cefquinome against Streptococcus agalactiae in a murine mastitis model. PLoS ONE. 2023; 18 (1): e0278306. doi: 10.1371/journal.pone.0278306.

34. Hassan S. F., Altaf S., Ijaz M., Mohy-ud-din M. T. A Review on ceftiofur international journal of advanced scientific research and management. 2016; 1(8): 22–26. www.ijasrm.com. ISSN 2455-6378 22.

35. Donaldson S. C., Straley B. A., Hegde N. V., Sawant A. A., DebRoy C., Jayarao B. M. Molecular Epidemiology of Ceftiofur-Resistant Escherichia coli isolates from dairy calves. Appl Environ Microbiol. 2006; 72 (6): 3940–3948. doi: 10.1128/AEM.02770-05.

36. Velazquez-Meza M. E., Galarde-López M., Carrillo-Quiróz B., AlpucheAranda C. M. Antimicrobial resistance: One Health approach. Vet World. 2022; 15 (3): 743–749. doi: 10.14202/vetworld.2022.743-749.

37. Wente N., Zoche-Golob V., Behr M., Krömker V. Susceptibility to cephalosporins of bacteria causing intramammary infections in dairy cows with a high somatic cell count in Germany. Prev Vet Med. 2016; 1 (131): 146–151. doi: 10.1016/j.prevetmed.2016.06.010.

38. McGahren W. J., Leese R. A., Barbatschi F., Morton G. O., Kuck N. A., Ellestad G. A. Components and degradation compounds of the avoparcin complex. J Antibiot (Tokyo). 1983; 36 (12): 1671–1682. doi: 10.7164/antibiotics.36.1671.

39. Kunstmann M. P., Mitscher L. A., Porter J. N., Shay A. J., Darken M. A. LL-AV290, a new antibiotic. I. Fermentation, isolation, and characterization. Antimicrob Agents Chemother. 1968; 8: 242–245.

40. Collignon P. J. Vancomycin-resistant enterococci and use of avoparcin in animal feed: is there a link? Med J Aust. 1999; 171 (3), 144–146. doi: 10.5694/j.1326-5377.1999.tb123568.x.

41. Butler M. S., Hansford K. A., Blaskovich M. A. T., Halai R., Cooper M. A. Glycopeptide antibiotics: Back to the future. J Antibiot (Tokyo). 2014; 67, 631–644. doi: 10.1038/ja.2014.111.

42. Adiveter. https://www.adiveter.com/ftp_public/articulo1138.pdf.

43. Abd El-Hack M. E., El-Saadony M. T., Elbestawy A. R., El-Shall N. A., Saad A. M., Salem H. M., El-Tahan A. M., Khafaga A. F., Taha A. E., AbuQamar S. F., El-Tarabily K. A. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives — a comprehensive review. Poult Sci. 2022; 101: 101590. doi: 10.1016/j.psj.2021.101590.

44. MSD Animal Health. https://www.msd-animal-health.co.za/product-list/.

45. Biswas S., Brunel J.-M., Dubus J.-C., Reynaud-Gaubert M., Rolain J.-M. Colistin: an update of the antibiotic of the 21st century. Expert Rev Anti Infect Ther. 2012; 10 (8): 917–934. doi: 10.1586/eri.12.78.

46. El-Sayed Ahmed M. A. E., Zhong L. L., Shen C., Yang Y., Doi Y., Tian G. B. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect. 2020; 9(1): 868–885. doi: 10.1080/22221751.2020.1754133.

47. Kumarasamy K. K., Toleman M. A., Walsh T. R., Bagaria J., Butt F., Balakrish-nan R., Chaudhary U., Doumith M., Giske C. G., Irfan S., Krishnan P., Kumar A. V., Maharjan S., Mushtaq S., Noorie T., Paterson D. L., Pearson A., Perry C., Pike R., Rao B., Ray U., Sarma J. B., Sharma M., Sheridan E., Thirunarayan M. A., Turton J., Upadhyay S., Warner M., Welfare W., Livermore D. M., Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10 (9): 597–602. doi: 10.1016/S1473-3099(10)70143-2.

48. Martin N., Hu H., Moake M. M., Churey J. J., Whittal R., Worobo R. W., Vederas J. C. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem. 2003; 27815 (11): 13124–13132. doi: 10.1074/jbc.M212364200.

49. Hamel M., Rolain J.-M., Baron S. A. The History of colistin resistance mechanisms in bacteria: progress and challenges. Microorganisms; 2021; 9: 442–458. doi: 10.3390/microorganisms9020442.

50. Martin N. I., Hu H., Moake M. M., Churey J. J., Whittal R., Worobo R. W., Vederas J. C. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem. 2003; 278 (15): 13124–13132. doi: 10.1074/jbc.M212364200.

51. Kumar H., Chen B.-H., Kuca K., Nepovimova E., Kaushal A., Nagraik R., Bhatia S. K., Dhanjal D. S., Kumar V., Kumar A., Upadhyay N. K., Verma R., Kumar D. Understanding of colistin usage in food animals and available detection techniques: a review. Animals (Basel). 2020; 10 (10): 1892–1920. doi: 10.3390/ani10101892.

52. http://publication.pravo.gov.ru/Document/View/0001202211300044?index=1.

53. Zhang J., Fan P.-H., Lin G.-M., W.-C. Chang, Liu H.-W. Recent progress in unusual carbohydrate-containing natural products biosynthesis in comprehensive natural products III (Third Edition): Chemistry and Biology. 2020; 2: 336–392. Elsevier. doi: https://doi.org/10.1016/B978-0-12-409547-2.14698-0.

54. Borovinskaya M. A., Shoji S., Fredrick K., Cate J. H. D. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA. 2008; 14: 1590–1599. doi: 10.1261/rna.1076908.

55. Abdulmunim Z., Jabba R. N., Al-Shaibani A. B. Studying the optimum conditions of hygromycin b production and detect their toxicity. JUBPAS. 2018; 26 (2): 119–130. doi: https://doi.org/10.29196/jub.v26i2.480.

56. https://domestic_veterinary_drugs.academic.ru/200/ГИГРОМИЦИН_Б.

57. http://www.cnshb.ru/AKDiL/0031/base/RG/000201.shtm.

58. Rao R. N., Allen N. E., Hobbs J. N., Alborn W. E., Kirst H. A., Paschal J. W. Genetic and enzymatic basis of hygromycin B resistance in Escherichia coli. Antimicrob Agents Chemother. 1983; 24 (5): 689–695. doi: 10.1128/aac.24.5.689.

59. Pazuki A., Asghari J., Sohani M. M., Pessarakli M., Aflaki F. Effects of some organic nitrogen sources and antibiotics on callus growth of indica rice cultivars. J. Plant Nutr., 2015, 38 (8): 1231–1240. doi: 10.1080/01904167.2014.983118.

60. Hamada M., Hashimoto T., Takahashi T., Yokoyama S., Miyake M., Takeuchi T., Okami Y., Umezawa H. Antimicrobial activity of kasugamycin. J Antibiot. ser. A; 1965; 18: 104-106. PMID: 14326081.

61. https://glavagronom.ru/substance/kasugamicin.

62. Müller F., Ackermann P., Margot P. Fungicides, agricultural, 2. Individual Fungicides 2012; 16: 158–228. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi: https://doi.org/10.1002/14356007.o12_o06.

63. http://weedcontrolproduct.ru/3-15-kasugamycin.html.

64. Desai P. M., Rife J. P. The adenosine dimethyltransferase KsgA recognizes a speciWc conformational state of the 30S ribosomal subunit. Arch Biochem Biophys. 2006; 449 (1–2): 57–63. doi: 10.1016/j.abb.2006.02.028.

65. Sinyagina O. P., Lapchinskaya O. A. Effect of antibiotic resistance on the appearance of mutants in a culture of Streptomyces Cremeus subsp. tobramycini producing an aminoglycoside complex. Antibiotiki. 1983; 28 (4): 262–265. PMID: 6859825 (in Russian)

66. Ryden R., Moore B. J. The in vitro activity of apramycin, a new aminocyditol antibiotic. J Antimicrob Chemother. 1977; 3 (6): 609–613.

67. https://vettorg.ru/catalog/item-299.html

68. Jensen V. F., Jakobsen L., Emborg H.-D., Seyfarth A. M., Hammerum A. M. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli. J Antimicrob Chemother. 2006; 58 (1): 101–107. doi: 10.1093/jac/dkl201.

69. Juhas M., Widlake E., Teo J., Huseby D. L., Tyrrell J. M., Polikanov Y. S., Ercan O., Petersson A., Cao S., Aboklaish A. F., Rominski A., Crich D., Bottger E. C., Walsh T. R., Hughes D., Hobbie S. N. In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. J Antimicrob Chemother. 2019; 74 (4): 944–952. doi: 10.1093/jac/dky546.

70. Zhao C., Chirkova A., Rosenborg S., Villar R. P., Lindberg J., Hobbie S. N., Friberg L. E. Population pharmacokinetics of apramycin from first-inhuman plasma and urine data to support prediction of efficacious dose. J Antimicrob Chemother. 2022; 77 (10): 2718–2728. doi: 10.1093/jac/dkac225.

71. https://www.alta.ru/tamdoc/22sr0001/.

72. Miroshnikova M. S. Tetratsiklinovyye antibiotiki v zhivotnovodstve i veterinarii. Shag v Nauku. 2021; 2: 10–20. ISSN 2542-1069. (in Russian)

73. Javid A., Mesdaghinia A., Nasseri S., Mahvi A. H., Alimohammadi M., Gharibi H. Assessment of tetracycline contamination in surface and groundwater resources proximal to anima. l farming houses in Tehran Iran. J Environ Heal Sci Eng. 2016; 14: 1–5. doi: 10.1186/s40201-016-0245-z.

74. Emaneini M., Bigverdi R., Kalantar D., Soroush S., Jabalameli F., Noorazar Khoshgnab B., Asadollahi P., Taherikalani M. Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in staphylococcus aureus strains isolated from a burn center. Ann Burns Fire Disasters. 2013; 26 (2): 76–80. PMID: 24133400.

75. Markley J. L., Wencewicz T. A. Tetracycline-inactivating enzymes. Front Microbiol. 2018; 9: 1058–1079. doi: 10.3389/fmicb.2018.01058.

76. https://www.alta.ru/tamdoc/18kr0028/.

77. http://publication.pravo.gov.ru/Document/View/0001202211300044.

78. Baggot J. D., Giguere S. Principles of antimicrobial drug bioavailability and disposition. Antimicrobial therapy in veterinary medicine, 5th Edition. Giguere S., Prescott J. F., Dowling P. M. (eds.). John Wiley & Sons, Wiley-Blackwell, 2013; 41–77. doi: https://doi.org/10.1002/9781118675014.ch4.

79. Hirsch R., Ternes T., Haberer K., Kratz K. L. Occurrence of antibiotics in the aquatic environment. Sci Total Environ. 1999; 225 (1–2): 109–118. doi: https://doi.org/10.1016/s0048-9697(98)00337-4.

80. https://amrls.umn.edu/antibiotics-veterinary-medicine#macrolides.

81. Petropoulos A. D., Kouvela E. C., Dinos G. P., Kalpaxis D. L. stepwise binding of tylosin and erythromycin to Escherichia coli ribosomes, characterized by kinetic and footprinting analysis. J Biol Chem. 2008; 28 3(8): 4756–4765. doi: 10.1074/jbc.M708371200.

82. Corcoran J. W., Huber M. L. B., Huber F. M. Relationship of ribosomal binding and antibacterial properties of tylosin-type antibiotics. J Antibiot (Tokyo). 1977; 30 (11): 1012–1014. doi: 10.7164/antibiotics.30.1012.

83. Jost H., Field A. C., Trinh H. T., Songer J. G., Billington S. J. Tylosin resistance in Arcanobacterium pyogenes is encoded by an erm x determinant B. Antimicrob Agents Chemother. 2003; 47 (11): 3519–3524. doi: 10.1128/AAC.47.11.3519–3524.2003.

84. https://www.federalregister.gov/documents/2012/09/10/2012- 22194/new-animal-drugs-enrofloxacin-tylvalosin.

85. Andersen N. M., Poehlsgaard J., Warrass R., Douthwaitea S. Inhibition of protein synthesis on the ribosome by tildipirosin compared with other veterinary macrolides. Antimicrob Agents Chemother. 2012; 56 (11): 6033– 6036. doi: 10.1128/AAC.01250-12.

86. Plomod′yalov D. Tilmikozin — makrolidnyy antibiotik novogo pokoleniya. Na stol veterinarnomu vrachu. Veterinariya. Zhivotnovodstvo Rossii. Spetsvypusk. 2015; 20–21. (in Russian)

87. Siteavu M. I., Drugea R. I., Pitoiu E., Ciobotaru-Pirvu E. Antimicrobial resistance of Actinobacillus pleuropneumoniae, Streptococcus suis, and Pasteurella multocida isolated from Romanian Swine Farms. Microorganisms. 2023; 11: 2410–2423. doi: 10.3390/microorganisms11102410.

88. Buret A. G. Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin. Can J Vet Res. 2010; 74: 1–10.

89. https://www.fda.gov/media/88094/download.

90. https://www.pharmawiki.ch/wiki/index.php?wiki=Tildipirosin.

91. Coetzee J. F., Magstadt D. R., Sidhu P. K., Follett L., Schuler A. M., Krull A. C., Cooper V. L., Engelken T. J., Kleinhenz M. D., O’Connor A. M. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples. PLoS ONE. 2019; 14 (12): e0219104. doi: 10.1371/journal.pone.0219104.

92. Peresb P. R., Prigolb S. R., Martínc C. B. G., Feronatodd C., Suriñachd M. C., Kreutza L. C., Frandolosoa R. Tildipirosin: An effective antibiotic against Glaesserella parasuis from an in vitro analysis. Vet Anim Sci. 2020; 10: 100136. doi: 10.1016/j.vas.2020.100136.

93. Coetzee J. F., Magstadt D. R., Sidhu P. K., Follett L., Schuler A. M., Krull A. C., Cooper V. L., Engelken T. J., Kleinhenz M. D., O’Connor A. M. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples. PLoS ONE. 2019; 14(12): e0219104. doi: 10.1371/journal.pone.0219104.

94. https://doi.org/10.1371/journal.pone.0219104.

95. Lewy K., Cernicchiaro N., Dixon A. L., Beyene T. J., Shane D., George L. A., Nagaraja T. G., White B. J., Sanderson M. W. Association between tulathromycin treatment for bovine respiratory disease and antimicrobial resistance profiles among gut commensals and foodborne bacterial pathogens isolated from feces of beef steers. J Food Prot. 2022; 85 (8): 1221–1231. doi: 10.4315/jfp-22-078.

96. New Animal Drugs; Gamithromycin. Federal Register. A Rule by the Food and Drug Administration on 09/19/2011. https://www.federalregister.gov/documents/2011/09/19/2011-23874/new-animal-drugsgamithromycin.

97. Torres S., Thomson D. U., Bello N. M., Nosky B. J., Chris D. Reinhardt. Field study of the comparative efficacy of gamithromycin and tulathromycin for the control of undifferentiated bovine respiratory disease complex in beef feedlot calves at high risk of developing respiratory tract disease. Am J Vet Res. 2013; 74: 839–846. doi: 10.2460/ajvr.74.6.839.

98. Miller T. J., Hubbert M. E., Reinhardt C. D., Loest C. A., Schwandt E. F., Thomson D. U. Comparison of tulathromycin, tilmicosin, and gamithromycin for metaphylactic treatment of high-risk calves for control of bovine respiratory disease. The Bovine Practitioner. 2016; 50 (2): 175–179. doi: https://doi.org/10.21423/bovine-vol50no2p175-179.

99. Aleksanyan L. A., Vertkin A. L., Gurevich K. G., Ishchenko A. L., Kolobov S. V., Lobanova E. G., Pashkov K. A., Popkov S. A., Popkova A. M., Soldatenko I. V. V kn. Makrolidy: Monografiya. Pod red. Popkovoy A. M., Vertkina A. L., Kolobova S. V. M.: Dialog. MGU. 2000; 108. ISBN 5-89209-494-504. Opublikovana na sayte RMZH (Russkiy meditsinskiy zhurnal): https://www.rmj.ru/articles/klinicheskaya_farmakologiya/Ispolyzovanie_makrolidov_pri_hirurgicheskih_infekciyah_koghi_i_myagkih_tkaney/#ixzz8c0gMSp3q. (in Russian)

100. Deluyker H. A., Van Oye S. N., Boucher J. F. Factors affecting cure and somatic cell count after pirlimycin. treatment of subclinical mastitis in lactating cows. J Dairy Sci. 2005; 88: 604–614. doi: 10.3168/jds.s0022-0302(05)72724-7.

101. Birkenmeyer R. D., Kroll S. J., Lewis C., Stern K. F., Zurenko G. E. Synthesis and antimicrobial activity of clindamycin analogues: pirlimycin, a potent antibacterial agent. J Med Chem. 1984; 27: 216–223. doi: 10.1021/jm00368a020.

102. https://iz.ru/1554209/2023-08-04/antibiotik-obnaruzhili-v-syrommoloke-v-amurskoi-oblasti.

103. Barnhart C. E., Robertson J. C., Miller H. W. Virginiamycin, a new antibiotic, for growing swine. J Anim Sci. 1960; 19 (4): 1247.

104. LeFevre J. W., Glass T.E, Kolpak M. X., Kingston D. G. I., Chen P. N. Biosynthesis of antibiotics of the virginiamycin family, 2. Assignment of the 13C-NMR spectra of virginiamycin m1 and antibiotic A2315A. J Nat Prod. 1983; 46 (4): 475–480. doi: https://doi.org/10.1021/np50028a008.

105. Wei B., Cha S.-Y., Zhang J.-F., Shang K., Park H.-C., Kang J. W., Lee K.-J., Kang M., Jang H.-K. Antimicrobial susceptibility and association with toxin determinants in clostridium perfringens isolates from chickens. Microorganisms. 2020; 8: 1825–1836. doi: 10.3390/microorganisms8111825.

106. Mukhtar T. A., Koteva K. P., Hughes D. W., Wright G. D. Vgb from Staphylococcus aureus inactivates streptogramin b antibiotics by an elimination mechanism not hydrolysis. Biochemistry. 2001; 40: 8877–8886. doi: 10.1021/bi0106787.

107. Delgado G., Neuhauser M. M., Bearden D. T., Danziger L. H. Quinupristin–dalfopristin: an overview. Pharmacotherapy. 2000; 20 (12): 1469– 1485. doi: 10.1592/phco.20.19.1469.34858.

108. Burch D. G., Goodwin R. F. Use of tiamulin in a herd of pigs seriously affected with Mycoplasma hyosynoviae arthritis. Vet Rec. 1984; 115 (23): 594–595. doi: 10.1136/vr.115.23.594.

109. Jordan F. T. W., Forrester C. A., Ripley P., Burch D. G. S. In vitro and in vivo comparisons of valnemulin, tiamulin, tylosin, enrofloxacin, and lincomycin/spectinomycin against Mycoplasma gallisepticum. Avian Diseases. 1998; 4 2(4): 738–45.

110. Killeavy E. E., Jogl G., Gregory S. T. Tiamulin-resistant mutants of the thermophilic bacterium Thermus thermophilus. Antibiotics. (Basel). 2020; 9: 313. doi: 10.3390/antibiotics9060313.

111. Marchese A., Debbia E. A., Tonoli E., Gualco L., Schito A. M. In vitro activity of thiamphenicol against multiresistant Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureusin Italy. J Chemother. 2002; 14 (6): 554–561. doi: 10.1179/joc.2002.14.6.554.

112. Syriopoulou V. P., Harding A. L., Goldmann D. A., Smith A. L. In vitro antibacterial activity of fluorinated analogs of chloramphenicol and thiamphenicol. Antimicrob Agents Chemother. 1981; 19 (2): 294–297. doi: 10.1128/AAC.19.2.294.

113. Gaunt P. S., Langston C., Wrzesinski C, Gao D., Adams P., Crouch L., Sweeney D., Endris R. Multidose pharmacokinetics of orally administered florfenicol in the channel catfish (Ictalurus punctatus). J Vet Pharmacol Ther. 2012; 36 (5): 502–506. doi: 10.1111/j.1365-2885.2012.01426.x.

114. Marchese A., Debbia E. A., Tonoli E., Gualco L., Schito, A. M. In vitro activity of thiamphenicol against multiresistant Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureusin. J Chemother. 2002; 14 (6): 554–561. doi: 10.1179/joc.2002.14.6.554.

115. Rossolini G. M., Arena F., Giani T. Mechanisms of Antibacterial Resistance. Anti-infective Therapy. Section 7. Chapter 138. 2017; 1181– 1196.e1. In book: . Eds. Cohen J., Powderly W. G., Opal S. M. Elsevier. doi: 10.1016/b978-0-7020-6285-8.00138-6 .

116. Pei L.-L., Yang W.-Z., Fu J.-Y., Liu M.-X., Zhang T.-T., Li D.-B., Huang R.- Y., Zhang L., Peng G.-N., Shu G., Yuan Z.-X., Lin J.-C., Zhang W., Zhong Z.-J., Zhao L., Fu H.-L. Synthesis, characterization, and pharmacodynamics. study of enrofloxacin mesylate. drug design, development and therapy. 2020; 14: 715–730. doi: 10.2147/DDDT.S239307.

117. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004; 28 (5): 519–542. doi: 10.1016/j.femsre.2004.04.001.

118. Huang F. An Z., Moran M. J., Liu F. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009–2019). J Hazard Mater. 2020; 399: 122813. doi.org/10.1016/j.jhazmat.2020.122813.

119. Ma W., Wang L., Xu X., Huo M., Zhou K., Mi K., Tian X., Cheng G., Huang L. Fate and exposure risk of florfenicol, thiamphenicol and antibiotic resistance genes during composting of swine manure. Sci Total Environ. 2022; 839: 156243. doi: 10.1016/j.scitotenv.2022.156243.

120. Brown S. A. Fluoroquinolones in animal health. J Vet Pharmacol Therap. 1996; 19 (1): 1–14. doi: 10.1111/J.1365-2885.1996.TB00001.X.

121. Rohlfing S. R., Gerster J. F., Kvam D. C. Bioevaluation of the antibacterial flumequine for urinary tract use. 1976; 10 (1): 20–24. doi: 10.1128/aac.10.1.20.

122. Schena F. P., Gesualdo L., Caracciolo G. A mulficentre study of flumequine in the treatment of urinary tract infections. J Antimicrob Chemother., 1988; 21 (1): 101– 106. doi: 10.1093/jac/21.1.101.

123. Potekhin A. V., Kovalishin V. F. Aktinobatsilleznaya plevropnevmoniya sviney: diagnostika, profilaktika i mery bor′by. Veterinariya Segodnya. 2014; (10): 9–22. (in Russian)

124. Concha C., Miranda C. D., Hurtado L., Romero J. Characterization of mechanisms lowering susceptibility to flumequine among bacteria isolated from chilean salmonid farms. Microorganisms. 2019; 7: 698– 713. doi: 10.3390/microorganisms7120698.

125. Oppegaard H., Sоrum H. GyrA mutations in quinolone-resistant isolates of the fish pathogen Aeromonas salmonicida. Antimicrob Agents Chemother. 1994; (10): 2460–2464. doi: 10.1128/aac.38.10.2460.

126. Pourhossein Z., Asadpour L., Habibollahi H., Shafighi S. T. Antimicrobial resistance in fecal Escherichia coli isolated from poultry chicks in northern Iran. Gene Reports. 2020; 21: 100926. doi: https://doi.org/10.1016/j.genrep.2020.100926.

127. Steffensky M., Mühlenweg A., Wang Z.-X., Li S.-M., Heide L. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother. 2000; 44 (5): 1214–1222. doi: 10.1128/aac.44.5.1214-1222.2000.

128. Rodríguez-Cerrato V., Del Prado G., Huelves L., Naves P., Ruiz V., García E., Ponte C., Soriano F. Comparative efficacy of novobiocin and amoxicillin in experimental sepsis caused by beta-lactam-susceptible and highly resistant pneumococci. 2010; 35 (6): 544–549. doi: 10.1016/j.ijantimicag.2010.02.007.

129. Dowling P. M. Miscellaneous antimicrobials: ionophores, nitrofurans, nitroimidazoles, rifamycins, and others. Chapter 19. In Book: Antimicrobial Therapy in Veterinary Medicine. 5th Ed. VetBooks. Willey Blackwell. Eds. Prescott J. F., Dowling P. M., Giguère S., P. 328–333.

130. Vickers A. A., Chopra I., O'Neill A. J. Intrinsic novobiocin resistance in Staphylococcus saprophyticus. Antimicrob Agents Chemother. 2007; 51 (12): 4484–4485. doi: 10.1128/AAC.00708-07.

131. Cheng G., Sa W., Cao C., Guo L., Hao H., Liu Z., Wang X., Yuan Z. Quinoxaline 1,4-di-N-oxides: biological activities and mechanisms of actions. Front. Pharmacol. 2016; 7: 64–97. doi: 10.3389/fphar.2016.00064.

132. Zhao Y., Cheng G., Hao H., Pan Y., Liu Z., Dai M., Zhao Z. Y. In vitro antimicrobial activities of animal used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi. BMC Veterinary Res. 2016; 12: 186–198. doi: 10.1186/s12917-016-0812-7.

133. Li J. S., Zhao R. C., Lu R. H. Quincetone growth promoter in fat chicklings. Ind Vet J. 2005; 82 (11): 1149–1151.

134. https://www.vgnki.ru›analitic_material_2013.

135. https://www.nationalhogfarmer.com/hog-health/pork-producersoppose-fda-proposal-to-revoke-carbadox, Sept. 18, 2020.

136. https://www.consultant.ru/document/cons_doc_LAW_401832/.

137. https://www.consultant.ru/document/cons_doc_LAW_401832/.

138. https://www.vgnki.ru › analitic_material_2013.

139. Hwang I. Y., Tan M. H., Koh E., Ho C. L., Poh C. L., Chang M. W. Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol. 2014; 3 (4): 228–237. doi: 10.1021/sb400077j.

140. Tang R., Tan H., Dai Y., Li L., Huang Y,. Yao H., Cai Y., Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. Front Plant Sci. 2023; 14: 1139539. doi: 10.3389/fpls.2023.1139539.

141. Morel C., Stermitz F. R., Tegos G., Lewis K. Isoflavones as potentiators of antibacterial activity. J Agric Food Chem. 2003; 51 (19): 5677–5679. doi: 10.1021/jf0302714.

142. Loponte R., Pagnini U., Iovane G., Pisanelli G. Phage therapy in veterinary medicine. Antibiotics (Basel). 2021; 10: 421–441. doi: 10.3390/antibiotics10040421.

143. https://rostec.ru/news/bakteriofagi-meditsina-budushchego/.

144. Van Dijk A., Hedegaard C. J., Haagsman H. P., Heegaard P. M. H. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Vet Res. 2018; 49: 68–83. doi: 10.1186/s13567-018-0558-2.

145. Hoelzer K., Bielke L., Blake D. P., Cox E., Cutting S. M., Devriendt B., Erlacher‑Vindel E., Goossens E., Karaca K., Lemiere S., Metzner M., Raicek M., Suriсach M. C., Wong N. M., Gay C., Van Immerseel F. Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Vet Res. 2018; 49: 64–73. doi: 10.1186/s13567-018-0560-8.

146. Simjee S., Ippolito G. European regulations on prevention use of antimicrobials from January 2022. Braz J Vet Med. 2022; 44: e000822. doi: 10.29374/2527-2179.bjvm000822.

147. https://www.accessscience.com/content/briefing/aBR0125171.

148. https://www.fsvps.gov.ru/fsvps-docs/ru/laws/eu/37-2010.pdf

149. http://publication.pravo.gov.ru/Document/View/0001202211300044 ?index=1.

150. https://kodeks.ru/news/read/v-korma-dlya-jivotnyh-zapreschenodobavlyat-antibiotiki-bez-oformleniya-recepta-ili-trebovaniya.

151. https://direct.farm/post/zapret-na-dobavleniye-v-korma-antibiotikov-bez-retsepta-otlozhili-na-2-goda-19481.

152. Dunchenko N. I., Voloshina E. S., Kuptsova S. V., Yankovskaya V. S., Mikhaylova K. V. A design of the quality control and safety mechanism for convenience meat products. IOP Conf. Ser. Earth Environ Sci. 2021; 640: 032008. doi: https://doi.org/10.1088/1755-1315/640/3/032008.

153. Dunchenko N. I., Yankovskaya V. S., Voloshina E. S., Ginzburg M. A., Kupriy A. S. Quality designing and food safety provisioning based on qualimetric forecasting. Food Science and Technology (Brazil). 2022; 42: e112021. doi: https://doi.org/10.1590/fst.112021.


Review

For citations:


Olsufyeva E.N., Yankovskaya V.S. Analysis of the Antibiotic Resistance Problem in the Agricultural Sector. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(9-10):108-132. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-9-10-108-132. EDN: POUZCX

Views: 319


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)