Anti-SARS-CoV-2 and Immunomodulatory Activity of Marine Bacteria Polysaccharides
https://doi.org/10.37489/0235-2990-2024-69-11-12-5-15
EDN: TXWPUH
Abstract
Background. Intensive research is currently underway to find new drugs to treat COVID-19, including the search for alternative antiviral treatments. Marine bacteria polysaccharides (PSs) are safe, biodegradable, and biocompatible polymers with a wide range of biological activity, including the ability to exert antiviral and immunomodulatory effects. In this regard, PSs attract the close attention of scientists as a promising source of antiviral medicinal substances.
The aim of the work is to evaluate the effect of PSs from 3 different species of marine bacteria on the expression of surface activation markers of innate immunity cells and to study their antiviral activity against the SARS-CoV-2 virus.
Methods. The effect of PSs on the expression of surface activation markers of innate immunity cells was studied by flow cytofluorometry. The study of the anti-SARS-CoV-2 activity of the PSs at the early stages of the virus life cycle was evaluated by inhibiting the cytopathogenic effect of the virus (in the MTT assay) and by real-time reverse transcription polymerase chain reaction (RT-PCR-RV).
Results. It was found that the studied PSs, differing in chemical structure, induced activation of innate immunity cells (monocytes, neutrophils, NK cells) in vitro. The results obtained both in the test of inhibition of the cytopathogenic effect of the virus and in reducing the level of RNA of the SARS-CoV-2 virus demonstrated the anti-SARS-CoV-2 activity of the PSs. PS1 showed the greatest activity, effectively inhibiting the early stages of SARS-CoV-2 interaction with the cell. Conclusion. The studied PSs can be considered a promising source of antiviral medicinal substances.
About the Authors
T. P. SmolinaRussian Federation
Tatyana P. Smolina — Ph. D. in Biology, Leading Researcher at the Laboratory of Immunobiological Preparations.
Vladivostok
Competing Interests:
нет
N. V. Krylova
Russian Federation
Natalya V. Krylova — D. Sc. in Biology, Leading Researcher, Head of the Laboratory of Respiratory Infections.
Vladivostok
Competing Interests:
нет
T. A. Kuznetsova
Russian Federation
Tatyana A. Kuznetsova — D. Sc. in Medicine, Chief Researcher at the Laboratory of Immunobiological Preparations.
Vladivostok
Competing Interests:
нет
L. A. Ivanushko
Russian Federation
Ludmila A. Ivanushko — Ph. D. in Medicine, Senior Researcher at the Laboratory of Immunobiological Preparations.
Vladivostok
Competing Interests:
нет
A. K. Gazha
Russian Federation
Anna K. Gazha — Ph. D. in Medicine, Senior Researcher at the Laboratory of Immunobiological Preparations.
Vladivostok
Competing Interests:
нет
E. V. Persiyanova
Russian Federation
Elena V. Persiyanova — Ph. D. in Biology, Senior Researcher at the Laboratory of Respiratory Infections.
Vladivostok
Competing Interests:
нет
O. S. Maistrovskaya
Russian Federation
Olga S. Maistrovskaya — Junior Researcher at the Laboratory of Respiratory Infections.
Vladivostok
Competing Interests:
нет
A. V. Gapeka
Russian Federation
Alena V. Gapeka — Junior Researcher, Department of Experimental Biomedicine.
Vladivostok
Competing Interests:
нет
I. A. Belov
Russian Federation
Iurii А. Belov — Junior Researcher, Center of Molecular Diagnostics.
Vladivostok
Competing Interests:
нет
M. S. Kokoulin
Russian Federation
Maxim S. Kokoulin — Ph. D. in Chemistry, Senior Researcher, Laboratory of Marine Glycobiology.
Vladivostok
Competing Interests:
нет
M. Yu. Shchelkanov
Russian Federation
Mikhail Yu. Shchelkanov — D. Sc. in Biology, Director.
Vladivostok
Competing Interests:
нет
References
1. Shchelkanov M. Yu., Kolobukhina L. V., Burgasova O. A., Kruzhkova I. S., Maleev V. V. COVID-19: etiology, clinic, treatment. Russian Journal of Infection and Immunity, 2020; 10 (3): 421–445. doi: https://doi.org/10.15789/2220-7619-CEC-1473. (in Russian)
2. Shchelkanov M. Yu. Etiology of COVID-19. In book: COVID19: from etiology to vaccination. A guide for doctors. Moscow: GEOTARMedia, 2023; 11–53. doi: https://doi.org/10.33029/9704-7967-4-COV2023-1-288. (in Russian)
3. Shchelkanov M. Yu., Popova A. Yu., Dedkov V. G., Akimkin V. G., Maleev V. V. Research history of coronaviruses. Russian Journal of Infection and Immunity. 2020, 10 (2): 221–246. doi: https://doi.org/10.15789/2220-7619-H0I-1412. (in Russian)
4. Pulmonology. National leadership. Short edition. A. G. Chuchalin (ed.). Moscow: GEOTAR-Media, 2013; 800. (in Russian)
5. Shchelkanov M. Yu., Ananiev V. Yu., Kuznetsov V. V., Shumatov V. B. Middle East respiratory syndrome: when will smouldering focus outbreak? Tikhookeanskiy Meditsin-Skiy Zhurnal = Pacific Medical Journal, 2015; 2: 94–98. (In Russ.)
6. Shchelkanov M. Yu., Ananiev V. Yu., Kuznetsov V. V., Shumatov V. B. Epidemic outbreak of Middle East respiratory syndrome in the Republic of Korea (May–July 2015): causes, dynamics, conclusions. Tikhookeanskiy Meditsin-Skiy Zhurnal = Pacific Medical Journal. 2015; 3: 89–93 (in Russian)
7. Nikiforov V. V., Kolobukhina L. V., Smetanina S. V., Mazankova L. N., Plavunov N. F., Shchelkanov M. Yu. et al. Novel coronavirus infection (COVID-19): etiology, epidemiology, clinics, diagnostics, treatment, and prophylaxis. Educational and methodological guide. Moscow: Department of Public Health of Moscow city, 2020; 71 p. URL: https://elibrary.ru/hgqiyk (in Russian)
8. Akimkin V. G., Popova A. Yu., Ploskireva A. A., Ugleva S. V., Semenenko T. A., Pshenichnaya N. Yu. et al. COVID-19: The evolution of the pandemic in Russia. Message I: manifestations of the epidemic process COVID-19. Journal of Microbiology, Epidemiology and Immunobiology. 2022; 99 (3): 269–286. doi: https://doi.org/10.36233/0372-9311-276. (in Russian)
9. Popova A. Yu., Shchelkanov M. Yu., Krylova Natalia V., Belik A. A., Semeikina L. M., Zaporozhets T. S. et al. Genotypic portrait of SARSCoV-2 in Primorsky Krai during the COVID-19 pandemic. Journal of Microbiology, Epidemiology and Immunobiology. 2024; 101 (1): 19–35. doi: https://doi.org/10.36233/0372-9311-497. (in Russian)
10. Shchelkanov M. Yu., Kolobukhina L. V., Lvov D. K. Human coronaviruses (Nidovirales, Coronaviridae): increased level of epidemic threat. Lechashchiy Vrach = The Attending Physician, 2013; 10: 49–54. (in Russian)
11. Gribova V. V., Okun D. B., Shalfeeva E. A., Shcheglov B. O., Shchelkanov M. Yu. Cloud service for the differential clinical diagnostics of acute respiratory viral diseases (including those associated with highly contagious coronaviruses) with an application of methods of artificial intelligence. Yakut Medical Journal. 2020; 2: 44–47. (in Russian)
12. Krylova N. V., Fedoreev S. A., Iunikhina O. V., Mishchenko N. P., Pott A. B., Persiyanova E. V. et al. A drug with antiviral effect against SARS-CoV-2 coronavirus. Patent of the Russian Federation for invention RU 2788762 C1 on application 2022127457 with priority from 24.10.2022; date of state registration: 01/24/2023; 12. (in Russian)
13. Krylova N. V., Iunikhina O. V., Fedoreev S. A., Pott A. B., Persiyanova E. V., Mishchenko N. P. et al. Anti-SARS-CoV-2 activity of the polyphenol complex from Maackia amurensis. Bull Exp Biol and Med. 2023; 176 (8): 216–219. doi: https://doi.org/10.47056/0365-9615-2023-176-8-216-219. (in Russian)
14. Somova L. M., Kotsyurbiy E. A., Drobot E. I., Krylova N. V., Lyapun I. N., Shchelkanov M. Yu. Pathomorphology of lymph nodes in cases of severe infection caused by SARS-CoV-2 observed in Primorsky Krai. Clinical and Experimental Morphology. 2022; 11 (4): 16–24. doi: https://doi.org/10.31088/CEM2022.11.4.16-24. (in Russian)
15. Kuznetsova T. A., Besednova N. N., Zaporozhets T. S., Kokoulin M. S., Khotimchenko Yu.S., Shchelkanov M. Yu. Antiviral Potential of Marine Bacteria Polysaccharides. Russian Journal of Marine Biology, 2024; 50 (3): 107–115. doi: https://doi.org/10.1134/S1063074024700056.
16. Bello-Morales R., Andreu S., Ruiz-Carpio V., Ripa I., López-Guerrero J. A. Extracellular polymeric substances: still promising antivirals. Viruses. 2022; 14 (6): 1337. doi: 10.3390/v14061337.
17. Krylova N. V., Silchenko A. S., Pott A. B., Ermakova S. P., Iunikhina O. V., Rasin A. B. et al. In vitro anti-orthohantavirus activity of the high-and low-molecular-weight fractions of fucoidan from the brown alga Fucus evanescens. Mar Drugs. 2021; 19 (10): 577. doi: 10.3390/md19100577.
18. Krylova N. V., Kravchenko A. O., Iunikhina O. V., Pott A. B., Likhatskaya G. N., Volod’ko A. V. et al. Influence of the structural features of carrageenans from red algae of the far eastern seas on their antiviral properties. Mar Drugs. 2022; 20 (1): 60. doi: 10.3390/md20010060.
19. O'Keefe, B. R., Giomarelli, B., Barnard, D. L., Shenoy, S. R., Chan, P. K., McMahon, J. B. et al. Broad spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol. 2010; 84 (5): 2511–2521. doi: 10.1128/jvi.02322-09.
20. Mishra N., Gupta E., Walag AMP., Kharwar RN., Singh P., Mishra P. A review of marine natural product resources with potential bioactivity against SARS-COV-2. Trop J Nat Prod Res. 2023; 7 (1): 2093–2103. doi: https://doi.org/10.26538/tjnpr/v7i1.2.
21. Khotimchenko Yu. S., Shchelkanov M. Yu. Viruses of the Ocean: on the shores of the aqua incognita. Horizons of taxonomic diversity. Russian Journal of Marine Biology. 2024; 50 (1): 1–24. doi: https://doi.org/10.31857/S0134347524010018.
22. Bello-Morales R., Andreu S., Ruiz-Carpio V., Ripa I., López-Guerrero J. A. Extracellular polymeric substances: still promising antivirals. Viruses. 2022; 14 (6): 1337. doi: 10.3390/v14061337.
23. Bianculli R. H., Mase J. D., Schulz M. D. Antiviral polymers: past approaches and future possibilities. Macromolecules. 2020; 53(21): 9158–9186. doi: https://doi.org/10.1021/acs.macromol.0c01273.
24. Besednova N. N., Andryukov B. G., Kuznetsova T. A., Zaporozhets T. S. Antiviral effects and mechanisms of action of water extracts and polysaccharides of microalgae and cyanobacteria. J Pharm Nutr Sci. 2022; 12: 54–73. doi: https://doi.org/10.29169/1927-5951.2022.12.
25. Salimi F., Farrokh P. Recent advances in the biological activities of microbial exopolysaccharides. World J Microbiol Biotechnol. 2023; 39: 213. doi: https://doi.org/10.1007/s11274-023-03660.
26. Gorshkova R. P., Nazarenko E. L., Zubkov A. A., Ivanova E. P., Ovodov Y. S., Shashkov A. S., Knirel Yu. A. Struktura povtoryayushchegosya zvena kislogo polisaharida Alteromonas haloplanktis KMM156. Bioorgan Khimiya. 1993; 19 (3): 327–336. (in Russian)
27. Kokoulin M. S., Kuzmich A. S., Kalinovsky A. I., Tomshich S. V., Romanenko L. A., Mikhailov V. V., Komandrova N. A. Structure and anticancer activity of sulfated O-polysaccharide from marine bacterium Cobetia litoralis KMM 3880T. Carbohydr Polym. 2016; 154: 55–61. doi: 10.1016/j.carbpol.2016.08.036.
28. Kokoulin M. S., Komandrova N. A., Kalinovsky A. I., Tomshich S. V., Romanenko L. A., Vaskovsky A. B. Structure of the O-specific polysaccharide from the deep-sea marine bacterium Idiomarina abyssalis КММ 227T containing a 2-O-sulfate-3-N-(4-hydroxybutanoyl)-3,6-dideoxy-d-glucose. Carbohydr. Res. 2015; 41: 100–106. doi: 10.1016/j.carres.2015.05.012.
29. Shchelkanov M. Yu., Sakhuria I. B., Polyakova E. B., Baranova V. V., Pashkova T. A., Kornilaeva G. V., Karamov E. V. Improving the quality of the MTT method using microdosing tips of a special design. Immunology. 1998; 19, 4: 57–59 (in Russian)
30. Shchelkanov M. Yu., Sakhuria I. B., Burunova V. V., Pashkova T. A., Abelian A. V., Pavlova T. V. et al. Dehydrogenase activity of HIV-infected cells in the analysis of MTT test results. Immunology. 1999; 20: 1: 37–41 (in Russian)
31. Shchelkanov M. Yu., Eremin V. F., Sakhuria I. B., Burunova V. V., Pavlova T. V., Kornilaeva G. V., Karamov E. V. Dehydrogenase activity of infected cells and biological properties of various HIV-1 variants. Biochemistry. 1999; 64 (4): 513–519. (in Russian)
32. Lu Y. C., Yeh W. C., Ohashi P. S. LPS/TLR4 signal transduction pathway. Cytokine. 2008; 42 (2): 145–151. doi: 10.1016/j.cyto.2008.01.006.
33. Ahrens P., Kattner E., Köhler B., Härtel C., Seidenberg J., Segerer H., Möller J., Göpel W., Genetic Factors in Neonatology Study Group. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res. 2004; 55 (4): 652–656. doi: 10.1203/01.PDR.0000112100.61253.85.
34. Hansson G. K., Edfeldt K. Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol. 2005; 25(6): 1085–1087. doi: 10.1161/01.ATV.0000168894.43759.47.
35. Zhang Y., Boesen C. C., Radaev S., Brooks A. G., Fridman W. H., SautesFridman C. et al. Crystal structure of the extracellular domain of a human FcγRIII. Immunity. 2000; 13 (3): 387–395. doi: 10.1016/s10747613(00)00038-8.
36. Landmann R., Knopf H. P., Link S., Sansano S., Schumann R., Zimmerli W. Human monocyte CD14 is upregulated by lipopolysaccharide. Infect Immun. 1996; 64 (5): 1762–1769. doi: 10.1128/iai.64.5.1762-1769.1996.
37. Grage-Griebenow E., Flad H. D., Ernst M., Bzowska M., Skrzeczyñska J., Pryjma J. Human MO subsets as defined by expression of CD64 and CD16 differ in phagocytic activity and generation of oxygen intermediates. Immunobiology. 2000; 202 (1): 42–50. doi: 10.1016/S0171-2985(00)80051-0.
38. Fauriat C., Long E. O., Ljunggren H-G., Bryceson Y. T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010; 115(11): 2167–2176. doi: 10.1182/blood-2009-08238469.
39. Takashi S., Okubo J., Horie S. J. Contribution of CD54 to human eosinophil and neutrophil superoxide production. J Appl Physiol. 2001; 91 (2): 613–622. doi: 10.1152/jappl.2001.91.2.613.
40. Evans J. H., Horowitz A., Mehrabi M., Wise E. L., Pease J. E., Riley E. M. et al. A distinct subset of human NK cells expressing HLA-DR expand in response to IL-2 and can aid immune responses to BCG. Eur J Immunol. 2011; 41 (7): 1924–1933. doi: 10.1002/eji.201041180.
41. Mandelboim O., Malik P., Davis D. M., Jo C. H., Boyson J. E., Strominger J. L. Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proceedings of the National Academy of Sciences of the United.
42. Gazha A. K., Kuznecova T. A., Smolina T. P., Kokoulin M. S. Biologicheskaya aktivnost' polisaharidov iz morskih bakterij. Zdorov'e. Medicinskaya ekologiya. Nauka. 2019; 3 (79): 23–26. doi: https://doi.org/10.5281/zenodo.3559614 (in Russian)
43. Krylova N. V., Smolina T. P., Berlizova M. V., Leonova G. N. Immunocorrective and antiviral activity of polysaccharide from marine bacteria against tick-borne encephalitis virus. Antibiot Khimioter = Antibiotics and Chemotherapy. 2019; 64 (11–12): 16–24. doi: https://doi.org/10.37489/0235-2990-2019-64-1112-16-24. (in Russian)
44. Saadat Y. R., Khosroushahi A. Y., Gargari B. P. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym. 2019; 217: 79–89. doi: 10.1016/j.carbpol.2019.04.025.
45. van Erp E. A., van Kampen M. R., van Kasteren P. B., de Wit J. Viral infection of human natural killer cells. Viruses. 2019; 11 (3): 243. doi: 10.3390/v11030243.
46. Smyth M. J., Cretney E., Kelly J. M., Westwood J. A., Street S. E., Yagita H. et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005; 42: 501–510. doi: 10.1016/j.molimm.2004.07.034.
Review
For citations:
Smolina T.P., Krylova N.V., Kuznetsova T.A., Ivanushko L.A., Gazha A.K., Persiyanova E.V., Maistrovskaya O.S., Gapeka A.V., Belov I.A., Kokoulin M.S., Shchelkanov M.Yu. Anti-SARS-CoV-2 and Immunomodulatory Activity of Marine Bacteria Polysaccharides. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(11-12):5-15. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-11-12-5-15. EDN: TXWPUH