Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Optimization of the Scheme for Decontaminating Continuous Human Cell Cultures with Antibiotics of Different Mechanisms

https://doi.org/10.37489/0235-2990-2024-69-11-12-16-24

EDN: OEYYZZ

Abstract

The absence of contamination is an important condition for the reliability of the results obtained when conducting experiments on cell cultures. At the same time, long-term cultivation significantly increases the risk of contamination of the cellular material, and therefore it is necessary to maintain cellular purity and remove contaminants in the event of contamination. The most common contaminants are bacteria, yeast and fungi, and, in rare cases, viruses and protozoa. Accordingly, to combat biological contamination, it is necessary to use drugs of different mechanisms depending on the nature of the contaminant. The article examines the effect of the most common antibiotic and antimycotic drugs in laboratory practice on the vital activity of continuous adherent human cell cultures. It was shown that different cell cultures have different sensitivity to the drugs used for decontamination, which indicates the need to develop individual treatment regimens for a specific cell line. Safe ranges of drug concentrations were established for lung adenocarcinoma, osteosarcoma, colorectal carcinoma, and human embryonic kidney cells. Taking into account the obtained data, spontaneous contamination was treated in a long-cultivated strain of the H1299 line. Artificial infection of the studied cell lines with the identified contaminant followed by treatment according to a similar scheme confirmed the adequacy of using ciprofloxacin for decontamination of various adherent cultures in laboratory practice.

About the Authors

T. A. Grigoreva
St. Petersburg State Institute of Technology (Technical University)
Russian Federation

Tatyana A. Grigoreva — Ph. D. in Chemistry, Senior Researcher of the Laboratory of Molecular Pharmacology.

St. Petersburg


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов



A. A. Pozharskii
St. Petersburg State Institute of Technology (Technical University)
Russian Federation

Artur A. Pozharskii — Student, Laboratory of Molecular Pharmacology.

St. Petersburg


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов



Y. A. Grigorev
St. Petersburg State Institute of Technology (Technical University)
Russian Federation

Yaroslav A. Grigorev — Student, Laboratory of Molecular Pharmacology.

St. Petersburg


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов



D. N. Kindt
St. Petersburg State Institute of Technology (Technical University)
Russian Federation

Daria N. Kindt — Student, Laboratory of Molecular Pharmacology.

St. Petersburg


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов



D. S. Novikova
St. Petersburg State Institute of Technology (Technical University)
Russian Federation

Daria S. Novikova — Ph. D. in Chemistry, Senior Researcher of the Laboratory of Molecular Pharmacology.

St. Petersburg


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов



References

1. Abatenh E., Gizaw B., Tsegaye Z. Contamination in a microbiological laboratory. Int J Res Stud Biosci. 2018; 6 (4): 7–13. doi: https://doi.org/10.20431/2349-0365.0604002.

2. Mahmood A., Ali S. Microbial and viral contamination of animal and stem cell cultures: common contaminants, detection and elimination. Stem Cell Res Ther. 2017; 2 (5): 149–155. doi: https://doi.org/10.15406/jsrt.2017.02.00078.

3. Dalhoff A. Selective toxicity of antibacterial agents — still a valid concept or do we miss chances and ignore risks? Infection. 2021; 49: 29–56. doi: 10.1007/s15010-020-01536-y.

4. Chazotte B. Labeling nuclear DNA with Hoechst 33342. Cold Spring Harb Protoc. 2011; 2011 (1): pdb.prot5557. doi: 10.1101/pdb.prot5557.

5. Novikova D. S., Grigoreva T. A., Ivanov G. S., Melino G., Barlev N. A., Tribulovich V. Activating effect of 3-benzylidene oxindoles on AMPK: from computer simulation to high-content screening. ChemMedChem. 2020; 15 (24): 2521–2529. doi: 10.1002/cmdc.202000579.

6. Grigoreva T., Romanova A., Sagaidak A., Vorona S., Novikova D., Tribulovich V. Mdm2 inhibitors as a platform for the design of P-glycoprotein inhibitors. Bioorg Med Chem Lett. 2020; 30 (18): 127424. doi: 10.1016/j.bmcl.2020.127424.

7. Grigoreva T., Sagaidak A., Romanova A., Novikova D., Garabadzhiu A., Tribulovich V. Establishment of drug-resistant cell lines under the treatment with chemicals acting through different mechanisms. Chem Biol Interact. 2021; 344: 109510. doi: 10.1016/j.cbi.2021.109510.

8. Sharma S. K., Singh L., Singh S. Comparative study between penicillin and ampicillin. Sch J App Med Sci. 2013; 1 (4): 291–294. doi: https://doi.org/10.36347/sjams.2013.v01i04.019.

9. Kornder J. D. Streptomycin revisited: molecular action in the microbial cell. Med Hypotheses. 2002; 58 (1): 34–46. doi: https://doi.org/10.1054/mehy.2001.1450.

10. Jospe-Kaufman M., Siomin L., Fridman M. The relationship between the structure and toxicity of aminoglycoside antibiotics. Bioorg Med Chem Lett. 2020; 30 (13): 127218. doi: 10.1016/j.bmcl.2020.127218.

11. Birk A. V., Dubovi E. J., Zhang X., Szeto H. H. Antiviral activity of geneticin against bovine viral diarrhoea virus. Antivir Chem Chemother. 2008; 19 (1): 33–40. doi: 10.1177/095632020801900105.

12. Zhang G., Liu X., Zhang S., Pan B., Liu M. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem. 2018; 146: 599–612. doi: 10.1016/j.ejmech.2018.01.078.

13. Colozza C., Posteraro B., Santilli S., De Carolis E., Sanguinetti M. A., Girmenia C. In vitro activities of amphotericin B and ambisome against Aspergillus isolates recovered from Italian patients treated for haematological malignancies. J Antimicrob Agents. 2012; 39: 440–443. doi: 10.1016/j.ijantimicag.2012.01.013.

14. Dmitrieva N. V., Petukhova I. N. Comparative efficacy and tolerability of amphotericin B lipid complex and liposomal amphotericin B in the treatment of invasive fungal infections in patients with hematological malignancies: literature review. Oncohematology. 2014; 9 (1): 35–41. doi: doi.org/10.17650/1818-8346-2014-9-1-35-41. (in Russian)

15. Novikova D. S., Grigoreva T. A., Zolotarev A. A., Garabadzhiu A. V., Tribulovich V. G. Advanced palladium free approach to the synthesis of substituted alkene oxindoles via aluminum-promoted Knoevenagel reaction. RSC Adv. 2018; 60 (8): 34543–34551. doi: 10.1039/c8ra07576j.

16. Grigoreva T. A., Novikova D. S., Gureev M. A., Garabadzhiu A. V., Tribulovich V. G. Amino acids as chiral derivatizing agents for antiproliferative substituted N-benzyl isoindolinones. Chirality. 2018; 30 (6): 785–797. doi: 10.1002/chir.22854.

17. Gureev M., Novikova D., Grigoreva T., Vorona S., Garabadzhiu A., Tribulovich V. Simulation of MDM2 N‐terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2‐p53 protein–protein interaction. J Comput Aided Mol Des. 2020; 34: 55–70. doi: 10.1007/s10822-019-00260-6.

18. Arshad H., Patel Z., Mehrabian M., Bourkas M. E. C., Al-Azzawi Z. A. M., Schmitt-Ulms G., Watts J. C. The aminoglycoside G418 hinders de novo prion infection in cultured cells. J Biol Chem. 2021; 297 (3): 101073. doi: 10.1016/j.jbc.2021.101073.

19. Yadav V., Talwar P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed Pharmacother. 2019; 111: 934–946. doi: 10.1016/j.biopha.2018.12.119.

20. Shalunova N. V., Volkova R. A., Volgin A. R., Petruchuk E. M., Berdnikova Z. E., Elbert E. V. et al. Mycoplasma — contamination of cell cultures. BIOpreparations. Prevention, Diagnosis, Treatment. 2016; 16 (3): 151–160. (in Russian)

21. Greenfield E. A. Testing hybridoma cells for Mycoplasma contamination. Cold Spring Harb Protoc. 2021; 2021 (7). doi: 10.1101/pdb.prot103283.

22. Chernova O. A., Medvedeva E. S., Mouzykantov A. A., Baranova N. B., Chernov V. M. Mycoplasmas and their antibiotic resistance: The problems and prospects in controlling infections. Acta Naturae. 2016; 8 (2): 24–34. doi: https://doi.org/10.32607/20758251-2016-8-2-24-34. (in Russian)

23. Khilkevich N. D. K voprosu o genital’nykh mikoplazmennykh infektsiyakh. Voennaya meditsina. 2012; 2: 128–133. (in Russian)


Review

For citations:


Grigoreva T.A., Pozharskii A.A., Grigorev Y.A., Kindt D.N., Novikova D.S. Optimization of the Scheme for Decontaminating Continuous Human Cell Cultures with Antibiotics of Different Mechanisms. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(11-12):16-24. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-11-12-16-24. EDN: OEYYZZ

Views: 788


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)