Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Biofilms and Methods of Their Reproduction in the Experiment

https://doi.org/10.37489/0235-2990-2024-69-11-12-85-92

EDN: SRKNBR

Abstract

Isolated bacteria, their morphological, biochemical, and genetic properties are, to this day, the main object of research since the isolation of a pure culture of the pathogen by R. Koch and his formulation of the postulates reflecting the role of the microorganism in the development of infectious diseases. The pharmacokinetic and pharmacodynamic properties of compounds with potential antibacterial activity are also studied in relation to planktonic, free cells. In recent years, as knowledge accumulates and new infections and conditions involving specially organized microbial communities — biofilms — are discovered, the approach to the diagnosis and treatment of infectious diseases, especially those with a chronic course, is changing. In this regard, the improvement and development of new representative models of microbial consortia both in vitro and in vivo are extremely relevant. Along with modern research methods, this will allow us to deepen our knowledge of the patterns of formation, construction, and functioning of the microbial world in a specific ecological niche, to develop innovative approaches to the treatment of biofilm infections, and to discover new target points for the action of antimicrobial drugs, directed at a multifaceted microbial consortium instead of individual bacteria. The review presents the main approaches to reproducing biofilm infections in vitro and in vivo experiments, highlighting their advantages, disadvantages, and possible prospects for increasing the relevance and validity of the models.

About the Authors

A. D. Daudova
Astrakhan State Medical University
Russian Federation

Adilya D. Daudova — Ph. D. in Medicine, Associate Professor of the Department of Microbiology and Virology.

Astrakhan


Competing Interests:

none



Yu. Z. Demina
Astrakhan State Medical University
Russian Federation

Yuliya Z. Demina — Senior lecturer of the Department of Microbiology and Virology.

Astrakhan


Competing Interests:

none



O. V. Rubalsky
Astrakhan State Medical University
Russian Federation

Oleg V. Rubalsky — D. Sc. in Medicine, Professor, Head of the Department of Microbiology and Virology.

Astrakhan


Competing Interests:

none



A. L. Yasenyavskaya
Astrakhan State Medical University
Russian Federation

Anna L. Yasenyavskaya — Ph. D. in Medicine, Associate Professor, Head of the Research Center, Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology.

Astrakhan


Competing Interests:

none



References

1. Golikov A. A. «Robert Koh. Serdechnyj pristup». doi://proza.ru/2015/03/24/2325 (in Russian)

2. Costerton J. W., Geesey G. G., Cheng K.-J. How bacteria stick. Scientific American. 1978; 238 (1): 86–95. doi:10.1038/scientificamerican0178-86.

3. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., LappinScott H. M. Microbial biofilms. Annu Rev Microbiol. 1995; 49: 711–745. doi: 10.1146/annurev.mi.49.100195.003431.

4. Ehrlich G. D., Hu F. Z., Shen K., Stoodley P., Post J. C. Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res. 2005; 437: 20–24. doi: 10.1097/00003086-200508000-00005.

5. Dowd S. E., Sun Y., Secor P. R., Rhoads D. D., Wolcott B. M., James G. A., Wolcott R. D. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 2008; 8: 43. doi: 10.1186/1471-2180-8-43.

6. Watnick P., Kolter R. Biofilm, city of microbes. J Bacteriol. 2000; 182 (10): 2675–2679. doi: 10.1128/JB.182.10.2675-2679.2000.

7. Costerton J. W., Stewart P. S., Greenberg E. P. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284 (5418): 1318–1322. doi: 10.1126/science.284.5418.1318.

8. El-Azizi M., Mushtaq A., Drake C., Lawhorn J., Barenfanger J., Verhulst S., Khardori N. Evaluating antibiograms to monitor drug resistance. Emerg Infect Dis. 2005; 11 (8): 1301–1302. doi: 10.3201/eid1108.050135.

9. Irie Y., Borlee B. R., O'Connor J. R., Hill P. J., Harwood C. S., Wozniak D. J., Parsek M. R. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2012; 109 (50): 20632–6. doi: 10.1073/pnas.1217993109. Epub 2012 Nov 21. PMID: 23175784; PMCID: PMC3528562.

10. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; 136: 1–51. doi: 10.1111/apm.12099. PMID: 23635385.

11. Mal'cev S. V., Mansurova G. Sh. Chto takoe bioplenka? Prakticheskaya medicina. 2011; 53: 7–10 (in Russian)

12. McCoy W. F., Bryers J. D., Robbins J., Costerton J. W. Observations of fouling biofilm formation. Can J Microbiol. 1981. Vol. 27, no. 9. P. 910–917. doi: 10.1139/m81-143. PMID: 7306879.

13. Teske A., Stahl D. A. Microbial mats and biofilms: Evolution, structure and function of fixed microbial communities, in biodiversity of microbial life: foundation of earth’s biosphere. J. T. Staley (ed.). New York: WileyLiss. 2002; 49–100.

14. Hoiby N., Flensborg E. W., Beck B., Friis B., Jacobsen S. V., Jacobsen L. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. Scand J Respir Dis. 1977; 58 (2): 65–79.

15. Lam J., Chan R., Lam K., Costerton J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 1980; 28 (2): 546–556. doi: 10.1128/iai.28.2.546-556.1980. PMID: 6772562; PMCID: PMC550970.

16. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., LappinScott H. M. Microbial biofilms. Annu Rev Microbiol. 1995; 49: 711–745. doi: 10.1146/annurev.mi.49.100195.003431.

17. Bjarnsholt T., Alhede M., Alhede M., Eickhardt-Sørensen S. R., Moser C., Kühl M., Jensen P. Ø., Høiby N. The in vivo biofilm. Trends Microbiol. 2013; 21 (9): 466–474. doi: 10.1016/j.tim.2013.06.002.

18. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jørgensen A., Molin S., Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003; 48 (6): 1511–1524. doi: 10.1046/j.1365-2958.2003.03525x. PMID: 12791135.

19. Sauer K. The genomics and proteomics of biofilm formation. Genome Biol. 2003; 4 (6): 219. doi: 10.1186/gb-2003-4-6-219. Epub 2003 May 27. PMID: 12801407; PMCID: PMC193612.

20. O'Toole G., Kaplan H. B., Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000; 54: 49–79. doi: 10.1146/annurev.micro.54.1.49. PMID: 11018124.

21. Schembri M. A., Kjaergaard K., Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol. 2003; 48 (1): 253–267. doi: 10.1046/j.1365-2958.2003.03432.x. PMID: 12657059.

22. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. Gene expression in Pseudomonas aeruginosa biofilms. Nature. 2001; 413 (6858): 860–864. doi: 10.1038/35101627. PMID: 11677611.

23. Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol. 2003; 185 (6): 1951–1957. doi: 10.1128/JB.185.6.1951-1957.2003.

24. Wen Z. T., Burne R. A. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol. 2002; 68 (3): 1196–1203. doi: 10.1128/AEM.68.3.1196-1203.2002.

25. Lyamin A. V., Botkin E. A., Zhestkov A. V. Metody vyjavlenija bioplenok v medicine: vozmozhnosti i perspektivy. KMAH. 2012. 14 (1): 17–22. (in Russian)

26. Merritt J. H., Kadouri D. E., O'Toole G. A. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005. Chapter 1: Unit 1B.1. doi: 10.1002/9780471729259.mc01b01s00.

27. Jakobsen T. H., van Gennip M., Christensen L. D., Bjarnsholt T., Givskov M. Qualitative and quantitative determination of quorum sensing inhibition in vitro. Methods Mol Biol. 2011; 692: 253–263. doi: 10.1007/978-160761-971-0_18.

28. Schwartz K., Stephenson R., Hernandez M., Jambang N., Boles B. R. The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis. J Vis Exp. 2010; 27 (46): 2470. doi: 10.3791/2470.

29. Li B., Dunham S. J. B., Ellis J. F., Lange J. D., Smith J. R., Yang N., King T. L., Amaya K. R., Arnett C. M., Sweedler J. V. A Versatile strategy for characterization and imaging of drip flow microbial biofilms. Anal Chem. 2018; 90 (11): 6725–6734. doi: 10.1021/acs.analchem.8b00560.

30. Schwartz K., Stephenson R., Hernandez M., Jambang N., Boles B. R. The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis. J Vis Exp. 2010; 27 (46): 2470. doi: 10.3791/2470.

31. Mardanova A. M., Kabanov D. A., Rudakova N. L., Sharipova M. R. Bioplenki: osnovnye principy organizacii i metody issledovanija. Kazan': Link. 2016; 42. (in Russian)

32. Tec V. V., Tec G. V. Mikrobnye bioplenkii problemy antibiotikoterapii. Prakticheskaja Pul'monologija. 2013; 4: 60–64. (in Russian)

33. Ehrlich G. D., Veeh R., Wang X., Costerton J. W., Hayes J. D., Hu F. Z., Daigle B. J., Ehrlich M. D., Post J. C. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA. 2002; 287 (13): 1710–1715. doi: 10.1001/jama.287.13.1710.

34. Pedersen S. S., Shand G. H., Hansen B. L., Hansen G. N. Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS. 1990; 98 (3): 203–211.

35. Hoffmann N., Rasmussen T. B., Jensen P. Ø., Stub C., Hentzer M., Molin S., Ciofu O., Givskov M., Johansen H. K., Høiby N. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun. 2005; 73 (4): 2504–2514. doi: 10.1128/IAI.73.4.2504-2514.2005.

36. Moser C., Van Gennip M., Bjarnsholt T., Jensen P. Ø., Lee B., Hougen H. P., Calum H., Ciofu O., Givskov M., Molin S., Høiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS. 2009; 117 (2): 95–107. doi: 10.1111/j.1600-0463.2008.00018.x.

37. Schaber J. A., Triffo W. J., Suh S. J., Oliver J. W., Hastert M. C., Griswold J. A., Auer M., Hamood A. N., Rumbaugh K. P. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun. 2007; 75 (8): 3715–3721. doi: 10.1128/IAI.00586-07.

38. van Gennip M., Christensen L. D., Alhede M., Qvortrup K., Jensen P. Ø., Høiby N., Givskov M., Bjarnsholt T. Interactions between polymorphonuclear leukocytes and Pseudomonas aeruginosa biofilms on silicone implants in vivo. Infect Immun. 2012; 80 (8): 2601–2607. doi: 10.1128/IAI.06215-11. Epub 2012 May 14. PMID: 22585963; PMCID: PMC3434577.

39. Christensen L. D., Moser C., Jensen P. Ø., Rasmussen T. B., Christophersen L., Kjelleberg S., Kumar N., Høiby N., Givskov M., Bjarnsholt T. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology (Reading). 2007; 153 (7): 2312–2320. doi: 10.1099/mic.0.2007/006122-0. PMID: 17600075.

40. Moser C., Jensen P. O., Kobayashi O., Hougen H. P., Song Z., Rygaard J., Kharazmi A. H. Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol. 2002; 127 (2): 206–213. doi: 10.1046/j.13652249.2002.01731.x.

41. Moser C., Hougen H. P., Song Z., Rygaard J., Kharazmi A., Høiby N. Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. APMIS. 1999; 107 (12): 1093–1100. doi: 10.1111/j.1699-0463.1999.tb01514.x. PMID: 10660139.

42. Prabhakara R., Harro J. M., Leid J. G., Keegan A. D., Prior M. L., Shirtliff M. E. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun. 2011; 79 (12): 5010–5018. doi: 10.1128/IAI.05571-11.

43. Trøstrup H., Thomsen K., Christophersen L. J., Hougen H. P., Bjarnsholt T., Jensen P. Ø., Kirkby N., Calum H., Høiby N., Moser C. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair Regen. 2013; 21 (2): 292–299. doi: 10.1111/wrr.12016.

44. Brady R. A., Leid J. G., Calhoun J. H., Costerton J. W., Shirtliff M. E. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol. 2008; 52 (1): 13–22. doi: 10.1111/j.1574-695X.2007.00357.x.

45. Pedersen S. S., Shand G. H., Hansen B. L., Hansen G. N. Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS. 1990; 98 (3): 203–211.

46. Calum H., Moser C., Jensen P. Ø., Christophersen L., Maling D. S., van Gennip M., Bjarnsholt T., Hougen H. P., Givskov M., Jacobsen G. K., Høiby N. Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clin Exp Immunol. 2009; 156 (1): 102–110. doi: 10.1111/j.13652249.2008.03861.x.

47. Li D., Gromov K., Søballe K., Puzas J. E., O'Keefe R. J., Awad H., Drissi H., Schwarz E. M. Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J Orthop Res. 2008; 26 (1): 96–105. doi: 10.1002/jor.20452.

48. Bjarnsholt T., Jensen P. Ø., Jakobsen T. H., Phipps R., Nielsen A. K., Rybtke M. T., Tolker-Nielsen T., Givskov M., Høiby N., Ciofu O., Scandinavian Cystic Fibrosis Study Consortium. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients PLoS One. 2010; 5 (4): 10115. doi: 10.1371/journal.pone.0010115.

49. van Heeckeren A. M., Schluchter M. D., Xue W., Davis P. B. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am J Respir Crit Care Med. 2006; 173 (3): 288–296. doi: 10.1164/rccm.200506-917OC.

50. Buret A., Ward K. H., Olson M. E., Costerton J. W. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res. 1991; 25 (7): 865–874. doi: 10.1002/jbm.820250706. PMID: 1918103.

51. Costerton J. W., Lewandowski Z., DeBeer D., Caldwell D., Korber D., James G. Biofilms, the customized microniche. J Bacteriol. 1994; 76 (8): 2137–2142. doi: 10.1128/jb.176.8.2137-2142.1994.

52. Jwu-Ching Shu, Chi-Yu Hsu, Chih-Ching Wu, Mei-Hui Lin, Chien-Cheng Chen, Ching-Hsi Hsiao. The in vivo biofilm formation of Staphylococcus aureus in a mouse model: albumin is the major biofilm matrix (preprint. doi: 10.21203/rs.3.rs-3368672/v1.


Review

For citations:


Daudova A.D., Demina Yu.Z., Rubalsky O.V., Yasenyavskaya A.L. Biofilms and Methods of Their Reproduction in the Experiment. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(11-12):85-92. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-11-12-85-92. EDN: SRKNBR

Views: 733


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)