Structure of Pathogens Causing Invasive Mycoses and the Development of Their Resistance to Antifungal Drugs
https://doi.org/10.37489/0235-2990-2024-69-11-12-110-120
EDN: TXCJVE
Abstract
During the last decades, the number of cases of invasive mycoses has risen dramatically, and one of the reasons for that is the rise in the number of immunocompromised patients. The main causative agents of invasive mycoses are the pathogenic fungi from Candida and Aspergillus genera. The cases of invasive mycoses caused by the fungi from Mucorales order, Fusarium genus (sometimes from other taxa) also became more frequent. In 2022, WHO published for the first time a ranked list of fungal pathogens dangerous to human health, including the ones causing invasive mycoses. The most cases of invasive mycoses in intensive care units are caused by the causative agents from the Candida genus. The frequency of detection of Candida albicans as a causative agent has decreased from 70–80% in the end of 20th century to 40–60% in recent years. In contrast, the number of candidiasis caused by Nakaseomyces glabratus and Candida parapsilosis is growing. A limited number of drugs for systemic use from the polyenes, azoles, echinocandins, and flucytosine groups are used for treatment of invasive mycoses. The number of cultures resistant to antimycotics is increasing worldwide. The main factors of resistance to antimycotics among fungi are the general resistance of the species and long-term usage of such medications. Resistant or low-sensitive isolates of pathogenic fungi and the mechanisms of resistance have been identified for all used antimycotics. The strategy to overcome the problem of increasing cases of invasive mycoses should include the optimisation of treatment protocols for the invasive mycoses, the fundamental research of the mechanisms of resistance of pathogenic fungi, and the development of ways to overcome the resistance, including the search for the new antimycotics.
About the Authors
A. V. AvtonomovaRussian Federation
Anastasia V. Avtonomova — Ph. D. in Biology, Senior Researcher at the Laboratory of Biosynthesis of Biologically Active Substances.
Moscow
Competing Interests:
The authors declare that there is no conflict of interest related to the publication of this article
L. M. Krasnopolskaya
Russian Federation
Larissa M. Krasnopolskaya — D. Sc. in Biology, Leading researcher, Head of the Laboratory of Biosynthesis of Biologically Active Substances.
Moscow
Competing Interests:
The authors declare that there is no conflict of interest related to the publication of this article
References
1. Akimkin V. G., Tutelyan A. V., Shulakova N. I. Medical mycological iceberg recent trends in the epidemiology of mycoses. Infektsionnye bolezni. 2022; 20 (4): 120–126. doi: https://doi.org/10.20953/1729-9225-2022-1-120-126. (in Russian)
2. Ramazanova B. A., Batyrbaeva D.Zh., Beknazarova A. N. Varieties types of fungal infections in cancer patients. Vestnik KAZNMU. 2015; 3: 47–55 (in Russian)
3. Khostelidi S. N., Kozlova O. P., Shadrivova O. V., Shagdileeva E. V., Borzova Yu. V., Smirnov S. A. et al. Invasive mycoses in intensive care units (analysis of registry data and literature review). Problems in Medical Mycology. 2024; 26 (1): 3–21. (in Russian) doi: 10.24412/1999-6780-2024-1-3-21.
4. Popov D. A., Beloborodova N. V., Sedrakyan A. R. Posleoperatsionnye kandemii. Klinicheskaya anesteziologiya i reanimatologiya. 2009; 6 (1): 4–13. 20. (in Russian)
5. Larionova V. B., Bykov D. A. Candidiasis in hematologic malignancies. Onkogematologiya. 2007; 1: 62–71. (in Russian)
6. Vasileva N. V., Klimko N. N., Tsinzerling V. A. Diagnostika i lechenie invazivnykh mikozov: sovremennye rekomendatsii. Vestnik Sankt-Peterburgskoi meditsinskoi akademii poslediplomnogo obrazovaniya. 2010; 2 (4): 5–18. (in Russian)
7. Richardson M. The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infect. 2009; 15 Suppl 5: 2–9. doi: 10.1111/j.1469-0691.2009.02972.x.
8. Antoniadou A. Outbreaks of zygomycosis in hospitals. Clin Microbiol Infect. 2009; 15 Suppl 5: 55–59. doi: 10.1111/j.1469-0691.2009.02982.x.
9. Repetto E. C., Giacomazzi C. G., Castelli F. Hospital-related outbreaks due to rare fungal pathogens: a review of the literature from 1990 to June 2011. Eur J Clin Microbiol Infect Dis. 2012; 31 (11): 2897–2904. doi: 10.1007/s10096-012-1661-3.
10. Tahiri G., Lax C., Cánovas-Márquez J. T., Carrillo-Marín P., Sanchis M., Navarro E., Garre V., Nicolás F. E. Mucorales and mucormycosis: recent insights and future prospects. Journal of Fungi. 2023; 9 (3): 335. doi: 10.3390/jof9030335.
11. World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action. — World Health Organization, 2022. URL: https://iris.who.int/bitstream/handle/10665/363682/9789240060241-eng.pdf?sequence=1 (дата обращения 20.09.2024)
12. Casalini G., Giacomelli A., Antinori S. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritisation. Lancet Microbe. 2024; 5 (7): 717–724. doi: 10.1016/S2666-5247 (24)00042-9.
13. Arendrup M. C., Arikan-Akdagli S., Jørgensen K. M., Barac A., Steinmann J., Toscano C., et al. European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: Results from the ECMM Candida III study. J Infect. 2023; 87 (5): 428–437. doi: 10.1016/j.jinf.2023.08.001.
14. Tsay S. V., Mu Y, Williams S., Epson E., Nadle J., Bamberg W. M., et al. Burden of candidemia in the United States, 2017. Clinical Infectious Diseases 2020; 71 (9): e449–e453 doi: 10.1093/cid/ciaa193.
15. Risum M., Astvad K., Johansen H. K., Schønheyder H. C., Rosenvinge F., Knudsen J. D. et al. Update 2016–2018 of the nationwide Danish fungaemia surveillance study: epidemiologic changes in a 15-year perspective. Journal of Fungi (Basel). 2021; 7 (6): 491. doi: 10.3390/jof7060491.
16. Bretagne S., Sitbon K., Desnos-Ollivier M., Garcia-Hermoso D., LetscherBru V., Cassaing S. et al. Active surveillance program to increase awareness on invasive fungal diseases: the French RESSIF Network (2012 to 2018). mBio. 2022; 13 (3): e0092022. doi: 10.1128/mbio.00920-22.
17. Özbek L., Topçu U., Manay M., Esen B. H., Bektas S. N., Aydýn S. et al. COVID-19-associated mucormycosis: a systematic review and metaanalysis of 958 cases. Clinical Microbiology and Infection. 2023; 29 (6): 722–731. doi: 10.1016/j.cmi.2023.03.008.
18. Patel A., Agarwal R., Rudramurthy S. M., Shevkani M., Xess I., Sharma R. et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India. Emerging infectious diseases. 2021; 27 (9): 2349–2359. doi: 10.3201/eid2709.210934.
19. McDonald E. G., Butler-Laporte G., Del Corpo O., Hsu J. M., Lawandi A., Senecal J. et al. On the treatment of Pneumocystis jirovecii pneumonia: current practice based on outdated evidence. Open forum infectious diseases. 2021; 8 (12): ofab545. doi: 10.1093/ofid/ofab545.
20. Petukhova I. N., Dmitrieva N. V., Bagirova N. S., Kulaga E. V., Sokolova V. I., Sokolova E. N., i dr. Gribkovye superinfektsii v onkologii. Rossiiskii meditsinskii zhurnal. 2003; 11: 685. (in Russian)
21. Loginova O. P., Shevchenko N. I. Taksonomicheskaya struktura i rezistentnost‘ kandid u onkogematologicheskikh patsientov. Uspekhi meditsinskoi mikologii. 2022; 23: 139–141 (in Russian)
22. Morris A. M. Review: voriconazole for prevention or treatment of invasive fungal infections in cancer with neutropenia. Ann Intern Med. 2014; 161 (2): JC8. doi: 10.7326/0003-4819-161-2-201407150-02008.
23. Paramythiotou E., Frantzeskaki F., Flevari A., Armaganidis A., Dimopoulos G. Invasive fungal infections in the ICU: how to approach, how to treat. Molecules. 2014; 19 (1): 1085–1119. doi: 10.3390/molecules19011085.
24. Benedict K., Jackson B. R., Chiller T., Beer K. D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019; 68 (11): 1791–1797. doi: 10.1093/cid/ciy776.
25. Tragiannidis A., Tsoulas C., Kerl K., Groll A. H. Invasive candidiasis: Update on current pharmacotherapy options and future perspectives. Expert Opin. Pharmacother. 2013; 14: 1515–1528. doi: 10.1517/14656566.2013.805204.
26. Karpun N. A., Burova S. A., Evdokimov E. A., Chaus N. I. Invazivnyi kandidoz v otdeleniyakh reanimatsii i intensivnoi terapii. Meditsinskii alfavit. 2014; 2: 22–25. (in Russian)
27. Habighorst K., Sanders J. M., Hennessy S. A., Goff K., Wan B., Johns M. Identification of risk factors for intra-abdominal candidiasis. Surg Infect (Larchmt). 2023; 24 (10): 910–915. doi: 10.1089/sur.2023.149.
28. Bing J., Du H., Guo P., Hu T., Xiao V., Lu S. et al. Candida auris-associated hospitalizations and outbreaks, China, 2018-2023. Emerging Microbes & Infections. 2024; 13 (1): 2302843. doi: 10.1080/22221751.2024.2302843.
29. Paramythiotou E., Frantzeskaki F., Flevari A., Armaganidis A., Dimopoulos G. Invasive fungal infections in the ICU: how to approach, how to treat. Molecules. 2014; 19 (1): 1085–1119. doi: 10.3390/molecules19011085.
30. Dimopoulos G., Frantzeskaki F., Poulakou G., Armaganidis A. Invasive aspergillosis in the intensive care unit. Ann N Y Acad Sci. 2012; 1272: 31–39. doi: 10.1111/j.1749-6632.2012.06805.x.
31. Hassler A., Lieb A., Seidel D., Cesaro S., Greil J., Klimkoet N. et al. Disseminated fusariosis in immunocompromised children-analysis of recent cases identified in the Global Fungiscope Registry. The Pediatric Infectious Disease Journal. 2017; 36 (2): 230–231. doi.org/10.1097/INF.0000000000001396.
32. Richardson M., Class-Fleur L. K. Changes in the epidemiology of systemic fungal infections. Clin Microbiol Infect. 2008; 14 (Adj. 4): 5–24. doi: 10.1111/j.1469-0691.2008.01978.x.
33. Marr K. A., Carter R. A., Crippa F., Wald A., Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002 Apr 1; 34 (7): 909–917. doi: 10.1086/339202.
34. Lass-Flörl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses. 2009; 52 (3): 197–205. doi: 10.1111/j.14390507.2009.01691.x.
35. Repetto E. C., Giacomazzi C. G., Castelli F. Hospital-related outbreaks due to rare fungal pathogens: a review of the literature from 1990 to June 2011. Eur J Clin Microbiol Infect Dis. 2012; 31 (11): 2897–904. doi: 10.1007/s10096-012-1661-3.
36. Hendrickson J. A., Hu C., Aitken S. L., Beyda N. Antifungal resistance: a concerning trend for the present and future. Current infectious disease reports. 2019; 21 (12): 47. doi: 10.1007/s11908-019-0702-9.
37. Sidorenko I. A., Naletov S. V., Naletova E. N., Konysheva N. V. Obzor antimikoticheskikh lekarstvennykh sredstv, ispol’zuemykh dlya lecheniya invazivnykh mikozov u bol’nykh novoi koronavirusnoi infektsiei COVID-19. URL: https://dnmu.ru/wp-content/uploads/2022/05/Sidorenko-I.A.-Obzor-antimikoticheskikh-LS-1.pdf. (in Russian)
38. Setevoe izdanie «Registr lekarstvennykh sredstv Rossii RLS» [cited 2024 Oct 29]. Available from: https://www.rlsnet.ru/ (in Russian)
39. Veselov A. V. Clinical pharmacology and practical aspects of isavuconazole use. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2023; 25 (4): 379–394. (in Russian)
40. Tagirova L. I., Farvazova K. R., Valeeva D. R., Orlova M. D., Gubaidullin I. A., Tulyabaeva A. M. et al. Reviewing the mechanism of action and results of clinical studies on the antifungal drug ibrexafungerp. Obstetrics, Gynecology and Reproduction. 2024; 18 (2): 232–45. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.500/ (in Russian)
41. Syed Y. Y. Rezafungin: First Approval. Drugs. 2023; 83 (9): 833–840. doi: 10.1007/s40265-023-01891-8.
42. Logan A., Wolfe A., Williamson J. C. Antifungal Resistance and the Role of New Therapeutic Agents. Curr Infect Dis Rep. 2022; 24 (9): 105–116. doi: 10.1007/s11908-022-00782-5.
43. Ortenberg E. A. Perspektivnye antimikotiki dlya terapii invazivnykh gribkovykh infektsii (kratkii obzor literatury). Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2023; 25 (2): 165–170. (in Russian)
44. Gow N. A. R., Johnson C., Berman J., Coste A. T., Cuomo C. A., Perlin D. S. et al. The importance of antimicrobial resistance in medical mycology. Nat Commun. 2022; 13: 5352. https://doi.org/10.1038/s41467-022-32249-5.
45. Chen M., Hu D., Li T., Zheng D., Liao W., Xia X., Cao C. The epidemiology and clinical characteristics of fungemia in a tertiary hospital in Southern China: A 6-Year Retrospective Study. Mycopathologia. 2023; 188 (4): 353–360. doi: 10.1007/s11046-023-00757-7.
46. Veselov A., Kozlov R. Invasive candidiasis: current aspects of epidemiology, diagnosis, therapy and prevention in different categories of patients (in questions and answers). Clinical Microbiology and Antimicrobial Chemotherapy. 2016; 18: 1–105. (in Russian)
47. Veselov A. V. The current place of echinocandins in the treatment and prophylaxis of invasive fungal infections. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2020; 22 (3): 197–209. (in Russian)
48. Pfaller M. A., Diekema D. J., Turnidge J. D., Castanheira M., Jones R. N. Twenty years of the sentry antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect Dis. 2019; 6 (Suppl 1): S79–S94. doi: 10.1093/ofid/ofy358.
49. Vallabhaneni S., Cleveland A. A., Farley M. M., Harrison L. H., Schaffner W., Beldavs Z. G. et al. Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large Multisite Population-Based Candidemia Surveillance Program, 2008–2014. Open Forum Infect Dis. 2015; 2 (4): ofv163. doi: 10.1093/ofid/ofv163.
50. Chowdhary A., Prakash A., Sharma C., Kordalewska M., Kumar A., Sarma S. et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018; 73: 891–899. https://doi.org/10.1093/jac/dkx480.
51. Lockhart S. R., Etienne K. A., Vallabhaneni S., Farooqi J., Chowdhary A., Govender N. P. et al. Simultaneous emergence of multidrug-resistant candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017; 64: 134–40. https://doi.org/10.1093/cid/ciw691.
52. Bezhenar M. B., Plakhova K. I. Antifungal drug resistance Candida spp. mechanisms in reccurent genital candidiasis. Molecular Genetics, Microbiology and Virology. 2020; 38 (1): 15-23. https://doi.org/10.17116/molgen20203801115. (in Russian)]
53. Logan A., Wolfe A., Williamson J. C. Antifungal resistance and the role of new therapeutic agents. Curr Infect Dis Rep. 2022; 24 (9): 105–116. doi: 10.1007/s11908-02200782-5.
54. Wang, Q., Cai, X., Li, Y., Zhao J., Liu Z., Jiang Y. et al. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study. Frontiers in Microbiology. 2022; 13: 1006375. doi: 10.3389/fmicb.2022.1006375.
55. Ahmed M. Z., Rao T., Saeed A., Mutahir Z., Hameed S., Inayat S. et al. Antifungal drugs: mechanism of action and resistance. Biochemistry of Drug Resistance. 2021; 5: 143–165.
56. Gutierrez-Perez C., Puerner C., Jones J. T., Vellanki S., Vesely E. M., Xatse M. A. et al. Unsaturated fatty acid perturbation combats emerging triazole antifungal resistance in the human fungal pathogen Aspergillus fumigatus. mBio. 2024; 15 (7): e0116624. doi: 10.1128/mbio.01166-24.
57. Pata J., Moreno A., Wiseman B., Magnard S., Lehlali I., Dujardinet M. et al. Purification and characterization of Cdr1, the drug-efflux pump conferring azole resistance in Candida species. Biochimie. 2024; 220: 167–178. doi: 10.1016/j.biochi.2023.12.007.
58. Sen P., Vijay M., Kamboj H., Gupta L., Shankar J., Vijayaraghavan P. cyp51A mutations, protein modeling, and efflux pump gene expression reveals multifactorial complexity towards understanding Aspergillus section Nigri azole resistance mechanism. Sci Rep. 2024; 14 (1): 6156. doi: 10.1038/s41598-024-55237-9.
59. Perlin D. S. Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs. 2014; 74 (14): 1573–1585. doi: 10.1007/s40265-014-0286-5.
60. Meersseman W., Lagrou K., Maertens J., Van Wijngaerden E. Invasive aspergillosis in the intensive care unit. Clin Infect Dis. 2007; 45 (2): 205–216. doi: 10.1086/518852.
61. Diagnostika i lechenie mikozov. D. R. Khospentala, M. Dzh. Rinaldi (eds.) Per. s angl. Yu.V.Sergeeva (ed.). Moscow: GEOTAR-Media. 2013; 448. (in Russian)
62. Sergeev A. Yu., Sergeev Yu.V. Gribkovye infektsii. Rukovodstvo dlya vrachei. Moscow: Izd-vo Binom, 2008; 480. (in Russian)
63. Kulko A. B. Aktivnost‘ in vitro amfoteritsina V, vorikonazola, itrakonazola i pozakonazola v otnoshenii osnovnykh i redko vstrechayushchikhsya vozbuditelei aspergilleza. Uspekhi meditsinskoi mikologii. 2017; 17: S. 333–336. (in Russian)
64. van der Linden J. W.M., Arendrup M. C., Warris A., Lagrou K., Pelloux H., Hauser P. M. et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis. 2015; 21 (6): 1041–1044. doi: 10.3201/eid2106.140717.
65. Shishodia S.K, Tiwari S., Shankar J. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology. 2019; 10: 151–65. https://doi.org/10.1080/21501203.2019.1574927.
66. Morogovsky A., Handelman M., Abou Kandil A., Shadkchan Y., Osherov N. Horizontal gene transfer of triazole resistance in Aspergillus fumigatus. Microbiol Spectr. 2022; 10 (3): e0111222. doi: 10.1128/spectrum.01112-22.
Review
For citations:
Avtonomova A.V., Krasnopolskaya L.M. Structure of Pathogens Causing Invasive Mycoses and the Development of Their Resistance to Antifungal Drugs. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(11-12):110-120. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-11-12-110-120. EDN: TXCJVE