Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

New Possibilities for Overcoming Antibiotic Resistance in Bacteria

https://doi.org/10.37489/0235-2990-2024-69-11-12-121-126

EDN: NCCDAC

Abstract

Antibiotic resistance remains one of the most significant barriers to successful treatment of bacterial diseases. The microorganisms present in biofilms develop antimicrobial resistance much faster and more powerfully than planktonic forms. With the help of «quorum sensing», bacteria in biofilms exchange information with each other to maximize their pathogenicity. This review examines the main mechanisms of antibiotic resistance, the structure and vital activity of biofilms, the mechanisms of the «sense of quorum», as well as possible ways to overcome antibiotic-resistant bacterial resistance due to the effect of suppressing the «sense of quorum».

About the Authors

A. N. Gratsianskaya
Russian National Research Medical University named after N. I. Pirogov of the Ministry of Health of the Russian Federation (Pirogov University)
Russian Federation

Anna N. Gratsianskaya — Ph. D. in Medicine, Associate Professor, Department of Clinical Pharmacology named after Yu. B. Belousov.

Moscow


Competing Interests:

none



N. V. Teplova
Russian National Research Medical University named after N. I. Pirogov of the Ministry of Health of the Russian Federation (Pirogov University)
Russian Federation

Natalia V. Teplova — D. Sc. in Medicine, Professor, Head of the Department of Clinical Pharmacology named after Yu. B. Belousov.

Moscow


Competing Interests:

none



L. B. Belousova
Russian National Research Medical University named after N. I. Pirogov of the Ministry of Health of the Russian Federation (Pirogov University)
Russian Federation

Lyudmila B. Belousova — 6th year student of the Pediatric Faculty; Laboratory Assistant at the Department of Clinical Pharmacology named after Yu. B. Belousov.

Moscow


Competing Interests:

none



References

1. Pankov A. A., Medvedeva K. A. Penicillin, its importance in medicine. Bulletin of Medical Internet Conferences. 2016; 1: 175. (in Russian)

2. Pulingam T., Parumasivam T., Gazzali A. M., Sulaiman A. M., Chee J. Y., Lakshmanan M., Chin C. F., Sudesh K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022 Mar 1; 170: 106103. doi: 10.1016/j.ejps.2021.106103.

3. Sidorenko S. V., Tishkov V. I. Molecular bases of resistance to antibiotics. Advances in Biological Chemistry. 2004; 44: 263–306. (in Russian)

4. Practical guide to anti-infective chemotherapy / edited by L. S. Strachunsky, Yu. B. Belousov, S. N. Kozlov. Smolensk: Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy, 2007; 462. ISBN 5-86064-115-X. (in Russian)

5. Morozov A. M., Zhukov S. V., Kovalchuk Yu. I., Nozhenko E. N., Minakova Yu. E. On the problems of combating antibiotic resistance (literature review). Bulletin of new medical technologies. Electronic Publication. 2022; 16 (2): 98–105. doi: https://doi.org/10.24412/2075-4094-2022-2-3-2. (in Russian)

6. Sharma D., Misba L., Khan A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019 May 16; 8: 76. doi: 10.1186/s13756-019-0533-3.

7. Petukhova I. N., Sokolovsky A. V., Grigoryevskaya Z. V., Bagirowa N. S., Tereshchenko I. V., Varlan G. V., Aginova V. V., Dmitrieva N. V. Infections associated with the installation of foreign materials (prostheses, meshes, implants). Malignant Tumours. 2017; (3s1): 57–60. doi: https://doi.org/10.18027/2224-50572017-3s1-57-60. (in Russian)

8. Juszczuk-Kubiak E. Molecular aspects of the functioning of pathogenic bacteria biofilm based on quorum sensing (QS) signal-response system and innovative non-antibiotic strategies for their elimination. Int J Mol Sci. 2024 Feb 24; 25 (5): 2655. doi: 10.3390/ijms25052655.

9. Lappin-Scott H., Burton S., Stoodley P. Revealing a world of biofilms — the pioneering research of Bill Costerton. Nat Rev Microbiol. 2014 Nov; 12 (11): 781–787. doi: 10.1038/nrmicro3343.

10. Stoodley P., Boyle J. D., Dodds I., Lappin-Scott H. M. Consensus model of biofilm structure. In, Wimpenny J. W. T., Handley P. S., Gilbert P., Lappin-Scott H. M. and Jones M. (eds.) Biofilms: Community Interactions and Control: 3rd meeting of the Biofilm Club. 1997; 1–9.

11. Thi M. T. T., Wibowo D., Rehm B. H. A. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020 Nov 17; 21 (22): 8671. doi: 10.3390/ijms21228671.

12. Petukhova I. N., Dmitrieva N. V., Grigorievskaya Z. V., Bagirova N. S., Tereshchenko I. V. Infections associated with biofilm formation. Malignant Tumours. 2019; 9 (3s1): 26–31. doi: https://doi.org/10.18027/2224-5057-2019-9-3s1-26-31. (in Russian)

13. Laryushina I. E. Basic mechanisms of «quorum sensing» and their implementation in a multimicrobial community (review). Animal Husbandry and Fodder Production. 2020; 103 (4): 160–173. doi: https://doi.org/10.33284/2658-3135-103-4-160. (in Russian)

14. Singh R., Sahore S., Kaur P., Rani A., Ray P. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strainand antibiotic-specific differences. Pathog Dis. 2016 Aug; 74 (6): ftw056. doi: 10.1093/femspd/ftw056.

15. Puchkov E. O. Communication of microbes. Chemistry and Life. 2015; 12: 28. (in Russian)

16. Deng Z., Luo X. M., Liu J., Wang H. Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol. 2020 Sep 25; 10: 538077. doi: 10.3389/fcimb.2020.538077.

17. Smith P., Schuster M. Antiactivators prevent self-sensing in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U. S.A. 2022 Jun 21; 119 (25): e2201242119. doi: 10.1073/pnas.2201242119.

18. Su Y., Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes. 2023 Dec; 15 (2): 2252780. doi: 10.1080/19490976.2023.2252780.

19. Azimi S., Klementiev A. D., Whiteley M., Diggle S. P. Bacterial Quorum Sensing During Infection. Annu Rev Microbiol. 2020 Sep 8; 74: 201–219. doi: 10.1146/annurev-micro-032020-093845.

20. Khmel I. A., Belik A. S., Zaitseva U. V., Danilova N. N. Quorum sensing and communication of bacteria. Vestnik Moskovskogo Universiteta. Seriya 16. Biologiya. 2008; (1): 28–35. (in Russian)

21. Zeng X., Zou Y., Zheng J., Qiu S., Liu L., Wei C. Quorum sensing-mediated microbial interactions: Mechanisms, applications, challenges and perspectives. Microbiol Res. 2023 Aug; 273: 127414. doi: 10.1016/j.micres.2023.127414.

22. Vikram A., Jayaprakasha G. K., Jesudhasan P. R., Pillai S. D., Patil B. S. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol. 2010 Aug; 109 (2): 515–527. doi: 10.1111/j.1365-2672.2010.04677.x.

23. Qu L., She P., Wang Y., Liu F., Zhang D., Chen L. et al. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen. 2016 Jun; 5 (3): 402–412. doi: 10.1002/mbo3.338.

24. Paluch E., Rewak-Soroczyńska J., Jędrusik I., Mazurkiewicz E., Jermakow K. Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol. 2020 Mar; 104 (5): 1871–1881. doi: 10.1007/s00253-020-10349-w. Epub 2020 Jan 11.

25. Cardile A. P., Woodbury R. L., Sanchez C. J. Jr., Becerra S. C., Garcia R. A., Mende K. et al. Activity of norspermidine on bacterial biofilms of multidrug-resistant clinical isolates associated with persistent extremity wound infections. Adv Exp Med Biol. 2017; 973: 53–70. doi: 10.1007/5584_2016_93.

26. Zhao J., Cheng W., He X., Liu Y., Li J., Sun J. et al. Association of furanone C-30 with biofilm formation & antibiotic resistance in Pseudomonas aeruginosa. Indian J Med Res. 2018 Apr; 147 (4): 400–406. doi: 10.4103/ijmr.IJMR_2010_16.

27. Hentzer M., Wu H., Andersen J. B., Riedel K., Rasmussen T. B., Bagge N. et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003; 22: 3803–15. doi: 10.1093/emboj/CDG366.

28. Maeda T., García-Contreras R., Pu M., Sheng L., Garcia L. R., Tomás M. et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J. 2011; 6: 493–501. doi: 10.1038/ismej.2011.122.

29. Kalia V. C., Wood T. K., Kumar P. Evolution of resistance to quorumsensing inhibitors. Microb Ecol. 2014; 68: 13–23. doi: 10.1007/s00248-013-0316-у.

30. Rajesh P. S., Rai V. R. Inhibition of QS-regulated virulence factors in Pseudomonas aeruginosa PAO1 and Pectobacterium carotovorum by AHL-lactonase of endophytic bacterium Bacillus cereus VT96. Biocatal. Agric. Biotechnol. 2016; 7: 154–163. doi: 10.1016/j.bcab.2016.06.003.

31. Kusada H., Tamaki H., Kamagata Y., Hanada S., Kimura N. A novel quorum-quenching n-acylhomoserine lactone acylase from Acidovorax sp. strain MR-S7 mediates antibiotic resistance. Appl Environ Microbiol. 2017 Jun 16; 83 (13): e00080–17. doi: 10.1128/AEM.00080-17.

32. Utari P. D., Setroikromo R., Melgert B. N., Quax W. J. PvdQ quorum quenching acylase attenuates Pseudomonas aeruginosa virulence in a mouse model of pulmonary infection. Front Cell Infect Microbiol. 2018 Apr 26; 8: 119. doi: 10.3389/fcimb.2018.00119.

33. Czajkowski R., Krzyżanowska D., Karczewska J., Atkinson S., Przysowa J., Lojkowska E. et al. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep. 2011 Feb; 3 (1): 59–68. doi: 10.1111/j.1758-2229.2010.00188.x.

34. Park J., Jagasia R., Kaufmann G. F., Mathison J. C., Ruiz D. I., Moss J. A. et al. Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol. 2007 Oct; 14 (10): 1119–1127. doi: 10.1016/j.chembiol.2007.08.013.

35. Lin Y. H., Xu J.L., Hu J., Wang L. H., Ong S. L., Leadbetter J. R. et al. Acylhomoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol. 2003 Feb; 47 (3): 849–60. doi: 10.1046/j.1365-2958.2003.03351.x.

36. Bijtenhoorn P., Mayerhofer H., Müller-Dieckmann J., Utpatel C., Schipper C., Hornung C. et al. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One. 2011; 6 (10): e26278. doi: 10.1371/journal.pone.0026278.

37. Iksanova A. M., Arzumanyan V. G., Konanykhina S. Yu. et al. Antimicrobial peptides and proteins in human biofluids. Microbiology Independent Research Journal (MIR Journal). 2022; 9 (1): 37–55. doi: https://10.18527/2500-2236-2022-9-1-37-55.ru. (in Russian)

38. Wei J., Cao X., Qian J., Liu Z., Wang X., Su Q. et al. Evaluation of antimicrobial peptide LL-37 for treatment of Staphylococcus aureus biofilm on titanium plate. Medicine (Baltimore). 2021 Nov 5; 100 (44): e27426. doi: 10.1097/MD.00000000000027426.

39. Ridyard K. E., Overhage J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics (Basel). 2021 May 29; 10 (6): 650. doi: 10.3390/antibiotics10060650.

40. Kang J., Dietz M. J., Li B. Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS One. 2019 Jun 6; 14 (6): e0216676. doi: 10.1371/journal.pone.0216676.

41. Overhage J., Campisano A., Bains M., Torfs E. C., Rehm B. H., Hancock R. E. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008 Sep; 76 (9): 4176–82. doi: 10.1128/IAI.00318-08.

42. Andersson D. I., Hughes D., Kubicek-Sutherland J. Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 2016 May; 26: 43–57. doi: 10.1016/j.drup.2016.04.002.

43. Batoni G., Maisetta G., Esin S. Therapeutic potential of antimicrobial peptides in polymicrobial biofilm-associated infections. Int J Mol Sci. 2021 Jan 6; 22 (2): 482. doi: 10.3390/ijms22020482.

44. Martyn L., Sethia R., Chon R., Novotny L., Goodman S. D., Elmaraghy C. et al. Antibodies against the DNABII protein integration host factor (IHF) inhibit sinus implant biofilms. Laryngoscope. 2020 Jun; 130 (6): 1364–1371. doi: 10.1002/lary.28188.

45. Estellés A., Woischnig A. K., Liu K., Stephenson R., Lomongsod E., Nguyen D., Zhang J., Heidecker M., Yang Y., Simon R. J., Tenorio E., Ellsworth S., Leighton A., Ryser S., Gremmelmaier N. K., Kauvar L. M. A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob Agents Chemother. 2016 Mar 25; 60 (4): 2292–2301. doi: 10.1128/AAC.02588-15.

46. Andryukov B. G., Nedashkovskaya E. P. Entering the post-antibiotic era: promising strategies for finding new alternative strategies to combat infectious diseases. Health. Medical ecology. Science. 2018; 3 (75): 36–50. (in Russian)


Review

For citations:


Gratsianskaya A.N., Teplova N.V., Belousova L.B. New Possibilities for Overcoming Antibiotic Resistance in Bacteria. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(11-12):121-126. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-11-12-121-126. EDN: NCCDAC

Views: 795


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)