Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Inhibitory Effect of Hemin-Polymer System Against Escherichia coli and Staphylococcus aureus

https://doi.org/10.37489/0235-2990-2025-70-1-2-4-11

EDN: ACWJVD

Abstract

   Background. Wound infections of bacterial etiology are a socially significant problem. The lack of rational antibiotic therapy can lead to an increase in the emergence of resistant strains of microorganisms. Thus, the search for approaches to solving this problem seems relevant.

   Aim. To study the inhibitory effect of the porphyrin-polymer system — heminpoly (3-hydroxybutyrate) (hemin-PHB) against Escherichia coli and Staphylococcus aureus, which play a significant role in the development of purulent-inflammatory processes.

   Material and methods. The purity of hemin was verified against the analytical standard by electron absorption spectroscopy. The hemin-PHB system was obtained by electrospinning. The hemin-polymer system morphology was determined by scanning electron microscopy. The antibacterial activity of hemin-PHB (containing 1, 3, and 5% hemin) was evaluated against test cultures of Escherichia coli (strain 1257) and Staphylococcus aureus (strain 209-P) at dilutions of 104–107 CFU/ml by measuring inhibition zone diameters.

   Results. It was found that hemin metal complex introduction into the polymer matrix led to a change in the geometric parameters of polyhydroxybutyrate fibers, which was a consequence of the compaction and anisotropy of the nonwoven fibrous material. The hemin-PHB antibacterial activity was directly dependent on the hemin percentage in the polymer. PHB with 5 % hemin had the significant inhibitory effect. S. aureus showed a higher (on average, 10 %) sensitivity to hemin compared to E. coli.

   Conclusion. The variation of hemin content in PHB affects its structural and functional properties. PHB fibers containing 5 % hemin inhibit the growth of gram-negative and gram-positive bacteria — E. coli and S. aureus. The resulting porphyrin-polymer system can be recommended for use as the antiseptic material for wound treatment.

About the Authors

O. A. Gruznova
N. N. Semenov Federal Research Center for Chemical Physics, RAS; All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology — Branch of the Federal Scientific Center — K. I. Skryabin, Ya. R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, RAS
Russian Federation

Olga A. Gruznova, Ph. D. in Biology, Senior Researcher

Laboratory of Liquid-Phase Oxidation; Laboratory of Veterinary Sanitation

Moscow

Researcher ID: AAE-1710-2022; Author ID: 852788; Scopus Author ID: 57191475353


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



D. V. Gruznov
All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology — Branch of the Federal Scientific Center — K. I. Skryabin, Ya. R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, RAS
Russian Federation

Dmitry V. Gruznov, Ph. D. in Veterinary Sciences, Senior
Researcher

Laboratory of Veterinary Sanitation and Ecological Safety in Beekeeping

Moscow

Researcher ID: U-2196-2018; Author ID: 900655; Scopus Author ID: 58885769800


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



N. I. Popov
All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology — Branch of the Federal Scientific Center — K. I. Skryabin, Ya. R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, RAS
Russian Federation

Nikolay I. Popov, D. Sc. in Veterinary Sciences, Professor, Head of the Laboratory

Laboratory of Veterinary Sanitation

Moscow

Researcher ID: V-2249-2018; Author ID: 826242; Scopus Author ID: 57830275200


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



G. Sh. Shcherbakova
All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology — Branch of the Federal Scientific Center — K. I. Skryabin, Ya. R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, RAS
Russian Federation

Gulizar Sh. Shcherbakova, Ph. D. in Biology, Leading Researcher

Laboratory of Veterinary Sanitation

Moscow


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



E. N. Shuteeva
All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology — Branch of the Federal Scientific Center — K. I. Skryabin, Ya. R. Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, RAS
Russian Federation

Ekaterina N. Shuteeva, Researcher

Laboratory of Veterinary Sanitation

Moscow

Researcher ID: GXH-2248-2022; Author ID: 1167483


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



A. V. Lobanov
Moscow Pedagogical State University
Russian Federation

Anton V. Lobanov, D. Sc. in Chemistry, Professor, Head of
the Department

Department of General Chemistry

Moscow

Researcher ID: F-4813-2016; Author ID: 194359; Scopus Author ID: 7101957556


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



P. M. Tyubaeva
Plekhanov Russian University of Economics; Emanuel Institute of Biochemical Physics, RAS
Russian Federation

Polina M. Tyubaeva, Leading Researcher, Junior Researcher

Academic Department of Innovational Materials and Technologies Chemistry; Department of Biological and Chemical Physics of Polymers

Moscow

Researcher ID: H-2401-2019; Author ID: 941829; Scopus Author ID: 57190939102


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



I. A. Varyan
Plekhanov Russian University of Economics; Emanuel Institute of Biochemical Physics, RAS
Russian Federation

Ivetta A. Varyan, Junior Researcher, Еngineer

Department of Biological and Chemical Physics of Polymers; Joint research center «Scientific equipment»

Moscow

Researcher ID: F-7913-2017;  Author ID: 1059857; Scopus Author ID: 57190939993


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



A. A. Olkhov
N. N. Semenov Federal Research Center for Chemical Physics, RAS; Plekhanov Russian University of Economics
Russian Federation

Anatoly A. Olkhov, D. Sc. in Chemistry, Associate Professor,
Leading Researcher, Head of the Laboratory

Scientific Laboratory of Advanced Composite Materials and Technologies; Laboratory of Diffusion Phenomena in Polymer Systems

Moscow

Researcher ID: F-9265-2017; Author ID: 47048. Scopus Author ID: 6602363287


Competing Interests:

The authors declare that there are no obvious and potential conflicts of interest related to the publication of this article



References

1. Blatun L. A. Local medicamentous treatment of wounds. Khirurgiya. 2011; 4: 51–59. (in Russian)

2. Fominykh S. G. Wound Infections: a Role of Microbiological Monitoring for the Hospital Antimicrobial Policy. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2011; 13 (4): 368–375. (in Russian)

3. Privol’nev V. V., Paskhalova Yu.S., Rodin A. V., Mitish V. A. Local treatment for wounds and wound infection according to the results of an anonymous survey of surgeons in Russia. Wounds and Wound Infections. 2016; 3 (1): 19–24. doi: 10.17650/2408-9613-2016-3-1-19-24. (in Russian)

4. Frolova A. V., Kosinets A. N., Okulich V. K. Wound infection. Problem state. Vestnik V. G.MU. 2014; 13 (2): 62–69. (in Russian)

5. Pakhomov Yu. D., Blinkova L. P., Abdullaeva A. M., Valitova R. K. Study of transitional dynamics towards the nonculturable state of antibiotic-resistant Escherichia coli сells. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2022; 67: 9–10: 11–17. doi: 10.37489/0235-2990-2022-67-9-10-11-17. (in Russian)

6. Huang M., Wang Zh., Yao L., Zhang L., Xingchun G., Haizhen M., et al. Ferric chloride induces ferroptosis in Pseudomonas aeruginosa and heals wound infection in a mouse model. Intern J Antimicrob Agents. 2023; 61 (5): 106794. doi: 10.1016/j.ijantimicag.2023.106794.

7. Begunov R. S., Egorov D. O., Chetvertakova A. V., Savina L. I., Zubishina A. A. Antibacterial activity of the halogenand nitro derivatives of benzimidazole against Bacillus Subtilis. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2023; 68: 3–4: 19–24. doi: 10.37489/0235-2990-2023-68-3-4-19-24. (in Russian)

8. Tovmasyan A., Batinic-Haberle I., Benov L. Antibacterial Activity of Synthetic Cationic Iron Porphyrins. Antioxidants. 2020; 9 (10): 972. doi: 10.3390/antiox9100972.

9. Dharmaratne P., Sapugahawatte D. N., Wang B., Chan Ch.L., Lau K.-M., Lau C.Bs., et al. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) : A systematic review. Eur J Med Chem. 2020; 200: 112341. doi: 10.1016/j.ejmech.2020.112341.

10. Andreychenko S. A., Sukonnikov T. A., Bychinin M. V., Klypa T. V. Difficulties in the diagnosis of acute porphyria: case report. Russian Journal of Anaesthesiology and Reanimatology = Anesteziologiya i Reanimatologiya. 2019; 3: 90–96. doi: 10.17116/anaesthesiology201903190. (in Russian)

11. Almahia W. A., Yud K. N., Mohammed F., Konga P., Han W. Hemin enhances radiosensitivity of lung cancer cells through ferroptosis. Exper Cell Res. 2022; 410 (1): 112946. doi: 10.1016/j.yexcr.2021.112946.

12. Bi S., Zhao T., Jia X., He P. Magnetic graphene oxide-supported hemin as peroxidase probe for sensitive detection of thiols in extracts of cancer cells. Biosens Bioelectron. 2014; 57: 110–116. doi: 10.1016/j.bios.2014.01.025.

13. Kim H., Yin K., Falcon D. M., Xue X. The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol Appl Pharmacol. 2019; 374: 77–85. doi: 10.1016/j.taap.2019.04.025.

14. Ladan H., Nitzan Y., Malik Z. The antibacterial activity of haemin compared with cobalt, zinc and magnesium protoporphyrin and its effect on potassium loss and ultrastructure of Staphylococcus aureus. FEMS Microbiology Letters. 1993; 112: 1173–178.

15. Malik Z., Ladan H., Nitzan Ye., Ehrenberg B. The bactericidal activity of a deuteroporphyrin–hemin mixture on gram-positive bacteria. A microbiological and spectroscopic study. Journal of Photochemistry and Photobiology B: Biology. 1990; 6 (4): 419–430.

16. Sahu A., Min K., Jeon J., Yang H. S., Tae G. Catalytic nanographene oxide with hemin for enhanced photodynamic therapy. J Control Release. 2020; 326: 442–454. doi: 10.1016/j.jconrel.2020.07.023.

17. Li Ch., Luo Z., Yang L., Chen J., Cheng K., Xue Ya. et al. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Mater Today Bio. 2022; 13: 100198. doi: 10.1016/j.mtbio.2021.100198.

18. Ji W., Wang T.-X., Ding X., Lei Sh., Han B.-H. Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application. Coordination Chemistry Reviews. 2021; 439: 213875. doi: 10.1016/j.ccr.2021.213875.

19. Faustova M. R., Nikolskaya E. D., Mollaev M. D., Sokol M. B., Zabolotsky A. I., Zhunina O. A., et al. Polymer particles containing Fe-based metalloporphyrin as a highly efficient stimulator of reactive oxygen species formation in vitro and in vivo. Russian Chemical Bulletin, International Edition. 2019; 68 (12): 2216–2224. doi: 10.1007/s11172-019-2690-1.

20. Li J., Tian J., Li Ch., Chen L., Zhao Yu. A hydrogel spinal dural patch with potential anti-inflammatory, pain relieving and antibacterial effects. Bioact Mater. 2022; 14: 389–401. doi: 10.1016/j.bioactmat.2022.01.043.

21. Yakushin S., Polyakova S., Shvarts Yu., Kastanayan A., Krechikova D., Ershova O. et al. Comparison of the efficacy and safety of ketoprofen plaster and diclofenac plaster for osteoarthritis-related knee pain: a multicenter, randomized, active-controlled, open-label, parallel-group, phase I. I. I. clinical trial. Clin Ther. 2021; 43 (10): 1720–1734. doi: 10.1016/j.clinthera.2021.08.002.

22. Tanabe H., Dоi T., Akai M., Fujino K., Arai S., Hayashi K. Effect and usability of anti-inflammatory drug plasters for knee osteoarthritis: A crossover, double-blind, repeated measures, randomized controlled trial. J Orthop Sci. 2021; 26: 421-429. doi: 10.1016/j.jos.2020.04.014.

23. Sebe I., Zsidai L., Zelkó R. Novel modified vertical diffusion cell for testing of in vitro drug release (IVRT) of topical patches. HardwareX. 2022; 11: e00293. doi: 10.1016/j.ohx.2022.e00293.

24. Wei Sh., Li J., He H., Shu Ch., Dardik A., Bai H. A three-layered hydrogel patch with hierarchy releasing of PLGA nanoparticles drugs decrease neointimal hyperplasia. Smart Materials in Medicine. 2022; 3: 139–147. doi: 10.1016/j.smaim.2021.12.005.

25. Saratale G. D., Oh M.-K. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int J Biol Macromol. 2015; 80: 627–635. doi: 10.1016/j.ijbiomac.2015.07.034.

26. Kosmachevskaya O. V., Osipov E. V., Van Ch.T. Mai Ph.Th.T., Topunov A. F. Effect of cultivation conditions on poly (3-hydroxybutyrate) synthesis by nodule bacteria rhizobium phaseoli. Applied Biochemistry and Microbiology. 2020; 56: 64–71 doi: 10.1134/S000368382001010X.

27. Tertyshnaya Y. V., Shibryaeva L. S., Levina N. S. Biodestruction of polylactide and poly (3-hydroxybutyrate) non-woven materials by micromycetes. Fibre Chemistry. 2020; 52 (1): 43–47. doi: 10.1007/s10692-020-10148-z.

28. Olkhov A. A., Zykova A. K., Pantyukhov P. V., Karpova S. G., Kosenko R. Y., Markin V. S., et al. Analysis of structure of hyperfine poly (3-hydroxybutyrate) fibers (PHB) for controlled drug delivery. IOP Conference Series: Materials Science and Engineering. 2018; 286. doi: 10.1088/1757-899X/286/1/012033.

29. Karpova S. G., Olkhov A. A., Bakirov A. V., Chvalun S. N., Shilkina N. G., Popov A. A. Poly (3-hydroxybutyrate) matrices modified with iron (III) complex with tetraphenylporphyrin. Analysis of structural and dynamic parameters. Chemical Physics. 2018; 37 (2): 64–77. doi: 10.7868/S0207401X18020097. (in Russian)

30. Karpova S. G., Ol’khov A. A., Lobanov A. V., Popov A. A., Iordanskii A. L. Biodegradable compositions of ultrathin poly-3-hydroxybutyrate fibers with MnCl<sub>2</sub>–tetraphenylporphyrin complexes. dynamics, structure, and properties. Nanotechnologies in Russia. 2019; 14 (3–4): 132–143. doi: 10.1134/S1995078019020083.

31. Karpova S. G., Ol'khov A. A., Krivandin A. V., Shatalova O. V., Popov A. A., Lobanov A. V. et al. Effect of zinc–porphyrin complex on the structure and properties of poly (3-hydroxybutyrate) ultrathin fibers. Polymer Science, Series A. 2019; 61 (1): 70–84. doi: 10.1134/S0965545X19010140.


Review

For citations:


Gruznova O.A., Gruznov D.V., Popov N.I., Shcherbakova G.Sh., Shuteeva E.N., Lobanov A.V., Tyubaeva P.M., Varyan I.A., Olkhov A.A. Inhibitory Effect of Hemin-Polymer System Against Escherichia coli and Staphylococcus aureus. Antibiot Khimioter = Antibiotics and Chemotherapy. 2025;70(1-2):4-11. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-1-2-4-11. EDN: ACWJVD

Views: 247


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)