New Possibilities for Evaluating Markers of Alzheimer's Disease in Blood Serum
https://doi.org/10.37489/0235-2990-2025-70-1-2-20-28
EDN: KZBIMH
Abstract
Given the steady increase in the number of cases of Alzheimer's disease, the issue of improving the level of its diagnosis is becoming more urgent.
The aim of the study was to develop a new method for verifying markers of Alzheimer's disease in blood serum based on graphene sensors.
Materials and methods. Graphene growth was carried out by sublimation. At the first stage of the experiment, the effectiveness of antibody attachment to human beta-amyloid peptide 1–42 and human total tau protein was evaluated. At the second stage, the sensors' ability to analyze beta-amyloid 1–42 proteins and total tau protein was evaluated.
Results. Graphene functionalized with sulfo groups from pyranine exhibits sufficient ability to immobilize antibodies. Treatment with glutaraldehyde of graphene functionalized by amino groups significantly increases the ability of the latter to immobilize antibodies. The sensors exhibit high sensitivity at protein concentrations in solutions from 10–10 to 10–15 g/ml. At low concentrations of antigen, the obtained calibration graphs steeply drop and slightly diverge, which makes it possible to use this area to determine an unknown concentration of antigen. The concentration of proteins in the blind experiment was determined with an error of 1.5 times, that is, about half the dilution step. A more fractional dilution of samples will help to achieve greater accuracy, which shows the fundamental applicability of the approach used.
Conclusion. The research conducted to date has allowed the development of medical, as well as physicochemical aspects of the action of graphene-based sensors for detecting low concentrations of beta-amyloid and tau protein proteins in media. The fundamental technical efficiency of this technique has been demonstrated.
Keywords
About the Authors
S. V. VorobevRussian Federation
Sergey V. Vorobev, D. Sc. in Medicine, Chief Researcher, Professor, Professor at the Department
Laboratory of Neurology and Neurorehabilitation; Department of Neurology with a Clinical Base; Department of Clinical Laboratory Diagnostics
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
A. Yu. Plekhanov
Russian Federation
Anton Yu. Plekhanov, Ph. D. in Biology, Junior Researcher
Laboratory of Systems Virology
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
I. K. Ternovykh
Russian Federation
Ivan K. Ternovykh, Assistant
Department of Neurology with a Clinical Base
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
A. S. Usikov
Russian Federation
Alexander S. Usikov, Ph. D. in Physics and Mathematics
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
A. А. Lebedev
Russian Federation
Alexander А. Lebedev, D. Sc. in Physics and Mathematics,
Professor, Head of the Department
Solid-State Electronics Department
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
A. N. Smirnov
Russian Federation
Alexander N. Smirnov, Ph. D. in Physics and Mathematics,
Senior Researcher
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
N. M. Shmidt
Russian Federation
Natalia M. Shmidt, D. Sc. in Physics and Mathematics, Chief Researcher
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
M. S. Dunaevskiy
Russian Federation
Mikhail S. Dunaevskiy, Ph. D. in Physics and Mathematics,
Deputy Head of the Department
Solid State Physics Department
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
S. P. Lebedev
Russian Federation
Sergey P. Lebedev, Ph. D. in Physics and Mathematics, Research Fellow
Saint Petersburg
Competing Interests:
The authors declare the absence of conflict of interests
References
1. Pérez Palmer N., Trejo Ortega B., Joshi P. Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatr Clin North Am. 2022; 45 (4): 639–661. doi: 10.1016/j.psc.2022.07.010.
2. 2023 Alzheimer's disease facts and figures. Alzheimers Dement. 2023; 19 (4): 1598–1695. doi: 10.1002/alz.13016.
3. Tkacheva O. N., Cherdak M. A., Mkhitaryan E. A. Examination of patients with cognitive impairments. RMJ. 2017; 25: 1880–1883. (in Russian)
4. Weller J., Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 2018; 7: F1000FacultyRev-1161. doi: 10.12688/f1000research.14506.1.
5. Dubois B., von Arnim C. A. F., Burnie N., Bozeat S., Cummings J. Biomarkers in Alzheimer's disease: role in early and differential diagnosis and recognition of atypical variants. Alzheimers Res Ther. 2023; 15 (1): 175. doi: 10.1186/s13195-023-01314-6.
6. Meier S. R., Sehlin D., Roshanbin S., Falk V. L., Saito T., Saido T. C. et al. 11C-PiB and 124I-antibody PET provide differing estimates of brain amyloid-β after therapeutic intervention. J Nucl Med. 2022; 63 (2): 302–309. doi: 10.2967/jnumed.121.262083.
7. Matsuda H., Okita K., Motoi Y., Mizuno T., Ikeda M., Sanjo N. et al. Clinical impact of amyloid PET using 18F-florbetapir in patients with cognitive impairment and suspected Alzheimer's disease: a multicenter study. Ann Nucl Med. 2022; 36 (12): 1039–1049. doi: 10.1007/s12149-022-01792-y.
8. Groot C., Villeneuve S., Smith R., Hansson O., Ossenkoppele R. Tau P. E. T Imaging in Neurodegenerative Disorders. J Nucl Med. 2022; 63 (1): 20–26. doi: 10.2967/jnumed.121.263196.
9. McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R. Jr., Kawas C. H. et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011; 7 (3): 263–269. doi: 10.1016/j.jalz.2011.03.005.
10. Koberskaya N. N. Alzheimer’s Disease: New Diagnostic Criteria and Therapeutic Aspects Depending on the Stage of the Disease. Medical Council. 2017; 10: 18–24. doi: 10.21518/2079-701x-2017-10-18-24. (in Russian)
11. Bai Y., Xu T., Zhang X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines (Basel). 2020; 11 (1): 60. doi: 10.3390/mi11010060.
12. Tufail S., Sherwani M. A., Shamim Z., Abdullah, Goh K. W., Alomary M. N. et al. 2D nanostructures: Potential in diagnosis and treatment of Alzheimer's disease. Biomed Pharmacother. 2024; 170: 116070. doi: 10.1016/j.biopha.2023.116070.
13. Lebedev A. A., Lebedev S. P., Novikov S. N., Davydov V. Y., Smirnov A. N., Litvin D. P., et al. Supersensitive graphene-based gas sensor. Technical Physics. 2016; 86 (3): 135–139. doi: 10.1134/S1063784216030130. (in Russian)
14. Vorobev S. V., Ternovykh I. K., Plekhanov A. Yu., Lebedev A. A., Smirnov A. N., Usikov A. S. et al. Graphene as basis of biological sensors for determining markers of neurodegenerative dementia. Medical Alphabet. 2023; 33: 28–33. doi: 10.33667/2078-5631-2023-33-28-33. (in Russian)
15. Xu Y., Bai H., Lu G., Li C., Shi G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. JACS. 2008; 130 (18): 5856–5857. doi: 10.1021/ja800745y.
16. Rong G. X., Lv Z.X., Pan Z. J., Zhang S. L., Deng P. Covalent immobilization of cellulase onto amino and graphene oxide functionalized magnetic Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>. Nanocomposites. J Nanosci Nanotechnol. 2021; 21 (9): 4749–4757. doi: 10.1166/jnn.2021.19127.
17. Plekhanov A.Yu., Puzyk M. V., Usikov A. S., Roenkov A. D., Lebedev A. A., Lebedev S. P. et al. Chemiluminescence of a Functionalized Graphene Surface. Optics and Spectroscopy. 2022; 130 (9): 1417–1422. doi: 10.21883/OS.2022.09.53305.3628-22. (in Russian)
18. Patent Rus N 2022128732/2022. Plekhanov A.Yu., Puzyk M. V., Usikov A. S., Roenkov A. D., Lebedev A. A., Lebedev S. P. et al. A method for restoring graphene's ability to bind proteins. (in Russian)
19. Borodin E. A. ELISA and PCR — modern methods of clinical laboratory diagnostics. Polyclinic. 2012; 2: 16–22. (in Russian)
20. Arranz J., Zhu N., Rubio-Guerra S., Rodríguez-Baz Í., Ferrer R., Carmona-Iragui M. et al. Diagnostic performance of plasma pTau217, pTau181, Aβ1-42 and Aβ1-40 in the LUMIPULSE automated platform for the detection of Alzheimer disease. Alzheimers Res Ther. 2024; 16 (1): 139. doi: 10.1186/s13195-024-01513-9.
21. Dai Y., Molazemhosseini A., Liu C. C. In vitro quantified determination of β-amyloid 42 peptides, a biomarker of neuro-degenerative disorders, in PBS and human serum using a simple, cost-effective thin gold film biosensor. Biosensors (Basel). 2017; 7 (3): 29. doi: 10.3390/bios7030029.
22. Rosén A., Gennser M., Oscarsson N., Kvarnström A., Sandström G., Seeman-Lodding H. et al. Protein tau concentration in blood increases after SCUBA diving: an observational study. Eur J Appl Physiol. 2022; 122 (4): 993–1005. doi: 10.1007/s00421-022-04892-9.
23. Janelidze S., Bali D., Ashton N. J., Barthélemy N. R., Vanbrabant J., Stoops E. et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer's disease. Brain. 2023; 146 (4): 1592–1601. doi: 10.1093/brain/awac333.
24. Zecca C., Pasculli G., Tortelli R., Dell'Abate M.T., Capozzo R., Barulli M. R. et al. The role of age on beta-amyloid1-42 plasma levels in healthy subjects. Front Aging Neurosci. 2021; 13: 698571. doi: 10.3389/fnagi.2021.698571.
25. Smirnov A. N., Plekhanov A. Yu., Puzyk M. V., Vorobev S. V., Usikov A. S., Dunaevskiy M. S. et al. Features of graphene functionalization in biosensors. International conference «Nanocarbon and Diamond»; 2024 July 1–5; St. Petersburg, SPb.: Mediapapir, 2024; Р5-4-25. Dostupno po: https://ncd2024.ioffe.ru. Ssylka aktivna na 28. 08. 2024. (in Russian)
26. McGeer P. L., Guo J. P., Lee M., Kennedy K., McGeer E. G. Alzheimer's Disease Can Be Spared by Nonsteroidal Anti-Inflammatory Drugs. J Alzheimers Dis. 2018; 62 (3): 1219–1222. doi: 10.3233/JAD-170706.
27. Tvarijonaviciute A., Zamora C., Ceron J. J., Bravo-Cantero A. F., Pardo-Marin L., Valverde S., Lopez-Jornet P. Salivary biomarkers in Alzheimer's disease. Clin. Oral Investig. 2020; 24 (10): 3437–3444. doi: 10.1007/s00784-020-03214-7.
28. Pekeles H., Qureshi H. Y., Paudel H. K., Schipper H. M., Gornistky M., Chertkow H. Development and validation of a salivary tau biomarker in Alzheimer's disease. Alzheimers Dement (Amst). 2018; 11: 53–60. doi: 10.1016/j.dadm.2018.03.003.
Review
For citations:
Vorobev S.V., Plekhanov A.Yu., Ternovykh I.K., Usikov A.S., Lebedev A.А., Smirnov A.N., Shmidt N.M., Dunaevskiy M.S., Lebedev S.P. New Possibilities for Evaluating Markers of Alzheimer's Disease in Blood Serum. Antibiot Khimioter = Antibiotics and Chemotherapy. 2025;70(1-2):20-28. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-1-2-20-28. EDN: KZBIMH