Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Current Perspective on the Treatment of the Novel Coronavirus Infection COVID-19

https://doi.org/10.37489/0235-2990-2025-70-1-2-88-99

EDN: PSCHFE

Abstract

   COVID-19, caused by the novel coronavirus SARS-CoV-2, has emerged as one of the most serious global health challenges in recent decades. The treatment of this condition has proven to be a complex task due to the lack of specific therapies and a clear understanding of its pathogenesis. A review of the literature on the treatment of COVID-19 at various stages has indicated that the prescription of many medications was often spontaneous and lacked an evidence-based foundation, relying instead on presumed effects. This approach was largely driven by the necessity for rapid response from the medical community. However, the safety of many of these medications remains inadequately studied. Furthermore, when employing various groups of medications — ranging from antiviral agents to corticosteroids — it is crucial to consider potential interactions among different drugs to minimize risks for patients. This article presents the results of a retrospective study on the efficacy and side effects of the main groups of medications used in the treatment of COVID-19.

About the Authors

I. Kh. Borukaeva
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Irina Kh. Borukaeva, D. Sc. in Medicine, Associate Profes-
sor, Head of the Department

Medical Academy; Department of Normal and Pathological
Human Physiology

Nalchik



Z. Kh. Abazova
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Zalina Kh. Abazova, Ph. D. in Medicine, Associate Professor; Associate Professor of the Department

Medical Academy; Department of Normal and Pathological Human Physiology

Nalchik



Z. A. Kambachokova
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Zareta A. Kambachokova, D. Sc. in Medicine, Professor

Medical Academy; Department of Hospital Therapy

Nalchik



A. A. Kambachokova
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Amina A. Kambachokova, 4th year student with a General
Medicine major

Medical Academy

Nalchik



A. A. Kardanov
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Azamat A. Kardanov, 4th year student with a General Medi-
cine major

Medical Academy

Nalchik



M. S. Djabrailova
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Mislina S. Djabrailova, 6th year student with a General
Medicine major

Medical Academy

Nalchik



Z. I. Сhanieva
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Zimfira I. Сhanieva, 6th year student with a General Medicine
major

Medical Academy

Nalchik



Kh. Kh. Akhmatov
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Khalid Kh. Akhmatov, 6th-year student with a General Med-
icine major

Nalchik



M. A. Abdurakhmanov
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Magomed A. Abdurakhmanov, 6th year student with a General Medicine major

Medical Academy

Nalchik



Sh. M. Baskariev
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Shaaban M. Baskariev, 6th year student with a General Med-
icine major

Medical Academy

Nalchik



E. B. Mezhikhova
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Elana B. Mezhikhova, 6th year student with a General Med-
icine major

Medical Academy

Nalchik



D. A. Shogenova
Kabardino-Balkarian State University named after H. M. Berbekov
Russian Federation

Diana A. Shogenova, 6th year student with a General Medicine major

Medical Academy

Nalchik



References

1. Zengin R., Sarikaya Z. T., Karadağ N., Çuhadaroğlu Ç., Ergönü Ö., Kocagöz S. Adverse cardiac events related to hydroxychloroquine prophylaxis and treatment of COVID-19. Infect Dis Clin Microbiol. 2020; 2 (1): 24–6. doi: 10.36519/idcm.2020.0012.

2. Jankelson L., Karam G., Becker M. L., Larry A Chinitz L. A., Tsaiet M.-Ch. QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19 : a systematic review. Heart Rhythm. 2020; 17 (9): 1472–9. doi: 10.1016/j.hrthm.2020.05.008.

3. Marin S., Val A. M., Peligero M. B., Rodríguez-Bernuz C., Ariadna Pérez-Ricart A., Jaqueset L. V. et al. Safety of short-term treatments with oral chloroquine and hydroxychloroquine in patients with and without COVID-19 : a systematic review. Pharmaceuticals (Basel). 2022; 15 (5): 634. doi: 10.3390/ph15050634.

4. Sevrioukova I. F., Poulos T. L. Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems. Dalton Transactions (Cambridge, England: 2003). 2013; 42 (9): 3116–26. doi: 10.1039/c2dt31833d.

5. Rosenberg E. S., Dufort E. M., Udo T., Larissa A Wilberschied L. A., Kumar J., Tesoriero J. et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA. 2020; 323 (24): 2493–502. doi: 10.1001/jama.2020.8630.

6. Ministerstvo zdravooxraneniya RF. Vremenny`e metodicheskie rekomendacii: profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). Versiya 7 (03. 06. 2020). Moscow: 2020; 166. (in Russian)

7. Kaur R. J., Charan J., Dutta S. Paras Sharma P., Bhardwaj P., Sharma P. et al. Favipiravir use in COVID-19: analysis of suspected adverse drug events reported in the WHO database. Infect Drug Resist. 2020; 13: 4427–38. doi: 10.2147/IDR.S287934.

8. Udwadia Z. F., Singh P., Barkate H., Patil S., Rangwala Sh., Pendse A. et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: a randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021; 103: 62–71. doi: 10.1016/j.ijid.2020.11.142.

9. Pilkington V., Pepperrell T., Hill A. A review of the safety of favipiravir — a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020; 6 (2): 45–51. doi: 10.1016/S2055-6640(20)30016-9.

10. Zhao H., Zhang C., Zhu Q., Chen X., Chen G., Sun W. et al. Favipiravir in the treatment of patients with SARS-CoV-2 RNA recurrent positive after discharge: A multicenter, open-label, randomized trial. Int Immunopharmacol. 2021; 97: 107702. doi: 10.1016/j.intimp.2021.107702.

11. Yamazaki S., Suzuki T., Sayama M., Nakada T.-A., Igari H., Ishii I. et al. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J Infect Chemother. 2021; 27 (2): 390–392. doi: 10.1016/j.jiac.2020.12.021.

12. Nasa P., Shrivastava P. K., Kulkarni A., Vijayan L., Singh A. et al. Favipiravir induced nephrotoxicity in two patients of COVID-19. J Assoc Physicians India. 2021; 69 (6): 11–2.

13. Beigel J. H., Tomashek K. M., Dodd L. E., Mehta K. A., Zingman S. B., Kalil C. A. et al. Remdesivir for the Treatment of COVID-19 — Final Report. N Engl J Med. 2020; 383 (19): 1813–1826. doi: 10.1056/NEJMoa2007764.

14. Tchesnokov E. P., Feng J. Y., Porter D. P., Gotte M. Mechanism of Inhibition of Ebola Virus R. N. A-Dependent R. N. A polymerase by Remdesivir. Viruses. 2019; 11 (4): 326. doi: 10.3390/v11040326.

15. Beigel J. H., Tomashek K. M., Dodd L. E. Remdesivir for the Treatment of COVID-19 — Preliminary Report. N Engl J Med. 2020; 7: 1647–1652. doi: 10.1056/NEJMc2022236.

16. Gupta A. K., Parker B. M., Priyadarshi V., Parker J. Cardiac adverse events with remdesivir in COVID-19 infection. Cureus. 2020; 12 (10): e11132. doi: 10.7759/cureus.11132.

17. Gubitosa J. C., Kakar P., Gerula C., Nossa H., Finkel D., Wong K. et al. Marked sinus bradycardia associated with remdesivir in COVID-19 : a case and literature review. JACC Case Rep. 2020; 2 (14): 2260–2264. doi: 10.1016/j.jaccas.2020.08.025.

18. Day L. B., Abdel-Qadir H., Fralick M. Bradycardia associated with remdesivir therapy for COVID-19 in a 59-year-old man. CMAJ. 2021; 193 (17): E612-5. doi: 10.1503/cmaj.210300.

19. Barkas F., Styla C. P., Bechlioulis A., Milionis H., Liberopoulos E. et al. Sinus bradycardia associated with remdesivir treatment in COVID-19 : a case report and literature review. J Cardiovasc Dev Dis. 2021; 8 (2): 18. doi: 10.3390/jcdd8020018.

20. Attena E., Albani S., Maraolo A. E., Mollica M., De Rosa D. A., Pisapia R. et al. Remdesivir-induced bradycardia in COVID-19: a single center prospective study. Circ Arrhythm Electrophysiol. 2021; 14 (7): e009811. doi: 10.1161/CIRCEP.121.009811.

21. Choi S. W., Shin J. S., Park S. J., Jung E., Park Y.-G., Lee J. et al. Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Res. 2020; 184: 104955. doi: 10.1016/j.antiviral.2020.104955 2.

22. Nabati M., Parsaee H. Potential cardiotoxic effects of remdesivir on cardiovascular system : a literature review. Cardiovasc Toxicol. 2022; 22 (3): 268–72. doi: 10.1007/s12012-021-09703-9.

23. Silva N. A. O., Zara A. L. S. A., Figueras A., Melo D. O. Potential kidney damage associated with the use of remdesivir for COVID-19: analysis of a pharmacovigilance database. Cad Saude Publica. 2021; 37 (10): e00077721. doi: 10.1590/0102-311X00077721.

24. Gérard A. O., Laurain A., Fresse A., Parassol N., Muzzone M., Rocher F. et al. Remdesivir and acute renal failure: a potential safety signal from Disproportionality analysis of the WHO safety database. Clin Pharmacol Ther. 2021; 109 (4): 1021–1024. doi: 10.1002/cpt.2145.

25. Mishinova S. A., Gomon Yu. M., Kolbin A. S. Strizheleczkij V. V., Ivanov I. G. Sistematicheskij obzor danny`x real`noj klinicheskoj praktiki pri COVID-19: neintervencionny`e issledovaniya. Farmakoe`konomika. Sovremennaya Farmakoe`Konomika i Farmakoe`Pidemiologiya. 2022; 15 (1): 145–161. doi: 10.17749/2070-4909/farmakoekonomika.2022.099. (in Russian)

26. Metlay J. P., Waterer G. W., Long A. C., Anzueto A., Brozek J., Crothers K. et al. Diagnosis and treatment of adults with community acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019; 200: e45–e67. doi: 10.1164/rccm.2019081581ST.

27. So L. K., Lau A. C., Yam L. Y., Cheung Th. M. T., Poon E., Yung R. W. H. et al. Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet. 2003; 361 (9369): 1615–1617. doi: 10.1016/s01406736(03)132655.

28. Ho W. Hong Kong hospital authority working group on sars, central committee of infection control. Guideline on management of severe acute respiratory syndrome (SARS). Lancet. 2003; 361 (9366): 1313–1315. doi: 10.1016/s01406736(03)13085.

29. Gautret P., Lagier J. C., Parola P., Hoang V. Th., Meddeb L., Mailhe M. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel nonrandomized clinical trial. Int J Antimicrob Agents. 2020; 56: 105949. doi: 10.1016/j.ijantimicag.2020.105949.

30. Pan H., Peto R., Henao-Restrepo A.-M., Preziosi M.-P., Sathiyamoorthy V., Karim Q. A. et al. Repurposed antiviral drugs for COVID-19 interim WHO Solidarity Trial results. N Engl J Med. 2021; 384 (6): 497–511. doi: 10.1056/NEJMoa2023184.

31. RECOVERY Collaborative Group; Horby P., Mafham M., Bell J. L., Staplin N., Emberson J. R., Linsell L. et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med. 2020; 383: 2030–2040. doi: 10.1056/NEJMoa2022926.

32. Molina J. M., Delaugerre C., Le Goff J., Mela-Lima B., Ponscarme D., Goldwirt L. et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020; 50: 384. doi: 10.1016/j.medmal.2020.03.006.

33. Cavalcanti A. B., Zampieri F. G., Rosa R. G., Azevedo C. P., Veiga V. C., Avezum A. et al. Hydroxychloroquine with or without azithromycin in mildtomoderate COVID-19. N Engl J Med. 2020; 383: 2041–2052. doi: 10.1056/NEJMoa2019014.

34. Fiolet T., Guihur A., Rebeaud M. E., Mulot M., Peiffer-Smadja N., Mahamat-Saleh Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients : a systematic review and metaanalysis Clin Microbiol Infect. 2021; 27 (1): 19–27. doi: 10.1016/j.cmi.2020.08.022.

35. Wiggins S. B., Sanoski A. C. Emergency cardiovascular pharmacotherapy: a point-of-care guide (point-of-care guides) by Dr. Barbara S. Wiggins Pharm. D. BCPS CLS FAHA 2012; 248.

36. Owens R. C. Jr. QT Prolongation with antimicrobial agents understanding the significance Drugs. 2004; (64): 1091–1124. doi: 10.2165/0000349520046410000005.

37. Sinopalnikov A. I. Pandemiya C. O.VID-19 — «pandemiya» antibakterial`noj terapii. Klinicheskaya Mikrobiologiya i Antimikrobnaya Terapiya. 2021; 23 (1): 5–15. doi: 10.36488/cmac.2021.1.515. (in Russian)

38. Mercuro N. J., Yen C. F., Shim D. J., Maher T. R., McCoy C. M., Zimetbaum P. J. et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for сoronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020; 5 (9): 1036–1041. doi: 10.1001/jamacardio.2020.1834.

39. Fiolet T., Guihur A., Rebeaud M. E., Mulot M., Peiffer-Smadja N., Mahamat-Saleh Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients : a systematic review and metaanalysis. Clin Microbiol Infect. 2021; 27 (1): 19–27. doi: 10.1016/j.cmi.2020.08.022.

40. Sandhu A., Tillotson G., Polistico J., Salimnia H., Cranis M., Moshos J. et al. Clostridiodes difficile in COVID-19 patients Emerg Infect Dis. 2020; 26: 2272–2274. doi: 10.3201/eid2609.202126.

41. Lewandowski K., Rosołowski M., Kaniewska M., Kucha P., Meler A., Wierzba W. et al. Clostridioides difficile infection in coronavirus disease 2019 (COVID-19): an underestimated problem? Pol Arch Intern Med. 2021; 131: 121–127. doi: 10.20452/pamw.15715.

42. ISARIC. International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC); 2020. Available at: https://isaric.tghn.org/. Accessed March, 2021.

43. Langford B. J., So M., Raybardhan S., Westwood D., Daneman N., Mac-Fadden R. D. et al. Antibiotic prescribing in patients with COVID-19: rapid review and metaanalysis. Clin Microbiol Infect. 2021; 1: 18. doi: 10.1016/j.cmi.2020.12.018.

44. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020; 21 (7): 2272. doi: 10.3390/ijms21072272.

45. Cao W., Liu X., Bai T., Fan H., Hong K., Song H. et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. 2020; 7 (3): 102. doi: 10.1093/ofid/ofaa102.

46. Prete M., Favoino E., Catacchio G., Racanelli V., Perosa F. SARS-CoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial? Autoimmun Rev. 2020; 19 (7): 102559. doi: 10.1016/j.autrev.2020.102559.

47. Rojas M., Rodríguez Y., Monsalve D. M., Camacho B., Gallo E. J., Mantilla D. R. et al. Convalescent plasma in COVID-19: possible mechanisms of action. Autoimmun Rev. 2020; 19 (7): 102554. doi: 10.1016/j.autrev.2020.102554.

48. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020; 21 (7): 2272. doi: 10.3390/ijms21072272.

49. Ranganathan S., Iyer N. R. Convalescent plasma — is it useful for treating SARS-CoV-2 infection? Indian J. Med Microbiol. 2020; 38 (3&4): 252–260. doi: 10.4103/ijmm.IJMM_20_358.

50. Lindholm P. F., Ramsey G., Kwaan H. C. Passive immunity for Coronavirus Disease 2019: A Commentary on Therapeutic Aspects Including Convalescent Plasma. Semin Thromb Hemost. 2020; 46 (7): 796–803. doi: 10.1055/s-0040-1712157.

51. Ashique S., Khatun T., Sahu G., Upadhyay A., Adhana A., Kumar S. et al. Convalescent plasma- an effective treatment option to prevent emerging nCOVID-19- a Review. Infect Disord Drug Targets. 2022; 22 (8): 42–60. doi: 10.2174/1871526522666220425103031.

52. Daneshpazhooh M., Soori T., Isazade A., Noormohammadpour P. Mucous membrane pemphigoid and COVID-19 treated with high-dose intravenous immunoglobulins: a case report J Dermatolog Treat. 2020; 31 (5): 446–447. doi: 10.1080/09546634.2020.1764472.

53. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020; 21 (7): 227. doi: 10.3390/ijms21072272.

54. Prete M., Favoino E., Catacchio G., Racanelli V., Perosa F. SARS-CoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial? Autoimmun Rev. 2020; 19 (7): 102559. doi: 10.1016/j.autrev.2020.102559.

55. Weinreich D. M., Sivapalasingam S., Norton T., Ali S., Gao H., Bhore R. et al. Trial investigators. REGN COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N Engl J Med. 2021; 384 (3): 238–251. doi: 10.1056/NEJMoa2035002.

56. Development of monoclonal antibody products targeting SARS-CoV-2, including addressing the impact of emerging variants, during the COVID-19 public health emergency. Guidance for Industry. FDA. 2021. URL: https://www.fda.gov/media/146173/download (date of request: 30. 05. 2022).

57. Wu J., Shen J., Han Y., Zhang J., Luo T., Guo Y. et al. Efficacy and safety of tocilizumab treatment COVID-19 patients: a case-control study and meta-analysis. Infect Dis Ther. 2021; 10 (3): 1677–1698. doi: 10.1007/s40121-021-00483-x.

58. Mahroum N., Watad A., Bridgewood C., Mansour M., Ahmad Nasr A., Hussein A. et al. Systematic review and meta-analysis of tocilizumab therapy versus standard of care in over 15,000 COVID-19 pneumonia patients during the first eight months of the pandemic. Int J Environ res Public Health. 2021; 18 (17): 9149. doi: 10.3390/ijerph18179149. PMID: 34501738.

59. Ghada A. Y., Wagih M. K., Abdel Hamid M. H. Safety and efficacy of tocilizumab in critically ill patients with COVID-19: an observational study. The Egyptian Journal of Bronchology. 2023; 17 (46). doi: 10.1186/s43168-023-00220-7.

60. Ayvat P., Omeroglu S. K. Tocilizumab treatment in COVID-19 patients: therapy's side effects and effect on mortality. Eur Rev Med Pharmacol Sci. 2024; 28 (5): 2107–2116. doi: 10.26355/eurrev_202403_35623.

61. Ullah S., Abid R., Haider S., Khuda F., Albadrani M. G., Abdulhakim A. J. et al. Assessment of tocilizumab (humanized monoclonal antibody) for therapeutic efficacy and clinical safety in patients with coronavirus disease (COVID-19) medicina (Kaunas). 2022; 58 (8): 1076. doi: 10.3390/medicina58081076.

62. Kyriakopoulos C., Ntritsos G., Gogali A., Milionis H., Evangelou E., Kostikas K. Tocilizumab administration for the treatment of hospitalized patients with COVID-19 : A systematic review and meta-analysis Respirology. 2021; 26 (11): 1027–1040. doi: 10.1111/resp.14152. Epub 2021 Oct 3. PMID: 34605114.

63. Sun J., Wang S., Ma X., Wei Q., Peng Y., Bai Y. et al. Efficacy and safety of baricitinib for the treatment of hospitalized adults with COVID-19 : a systematic review and meta-analysis. Eur J Med Res. 2023; 28 (1): 536. doi: 10.1186/s40001-023-01403-0.

64. Ferro F., La Rocca G., Elefante E., Italiano N., Moretti M., Talarico R. et al. Baricitinib and pulse steroids combination treatment in hyperinflammatory COVID-19: a rheumatological approach in the intensive. Care Unit International Journal of Molecular Scien. (Multidisciplinary Digital Publishing Institute). 2024; 25 (13): 72–73. doi: 10.3390/ijms25137273.

65. Praveen D., Puvvada R. C., Aanandhi V. M. Janus kinase inhibitor baricitinib is not an ideal option for management of COVID-19. Int J Antimicrob Agents. 2020 (55): 105967. doi: 10.1016/j.ijantimicag.2020.105967.

66. Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact J Infect. 2020; 81 (2): 318–356. doi: 10.1016/j.jinf.2020.04.017.

67. Manoharan S., Ying L. Y. Does baricitinib reduce mortality and disease progression in SARS-CoV-2 virus infected patients? A systematic review and metaanalysis. Respir Med. 2022; (202): 106986. doi: 10.1016/j.rmed.2022.106986.

68. Lyalyukova E. A., Dolgalev I. V., Chernysheva E. N., Druk I. V., Konovalova G. M., Lyalуukov A. V. et al. COVID-19 and liver dysfunction: current ideas and new therapeutic strategies. Lechaschy Vrach. 2021; 2 (24): 20–25. doi: 10.26295/OS.2021.16.99.004.

69. Zagrebneva A. I., Baryakh E. A., Zhelnova E. I., Poteshkina N. G., Beloglazova I. P., Mutovina Z. Yu., Samsonova I. V., Kovalevskaya E. A., Parshin V. V., Pshenichnikova V. V., Fomina D. S., Kruglova T. S., Lysenko M. A., Dranitsyna M. A. Baricitinib in the treatment of patients with COVID-19 : a review of international data and analysis of clinical results in the russian population. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021; 66 (1-2-): 47–56. doi: 10.37489/0235-2990-2021-66-1-2-47-56 (in Ruaaian)

70. RECOVERY Collaborative Group; Horby P., Mafham M., Bell J. L., Staplin N., Emberson J. R., Linsell L. et al. Dexamethasone in hospitalized patients with COVID-19 — preliminary research original investigation early treatment with tocilizumab and mortality among critically ill patients with COVID-19. N Engl J Med. N Engl J Med. 2021; 384 (8): 693–704. doi: 10.1101/2020.06.22.20137273.

71. Villar J., Ferrando C., Martínez D., Ambrós A., Muñoz T., Soler A. J. et al. Dexamethasone in ARDS network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial Lancet Respir Med. 2020; 8 (3): 267–276. doi: 10.1016/s2213–2600(19)30417–5.

72. Meduri G. U., Golden E., Freire A. X., Taylor E., Zaman M., Carson J. S. et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial Chest. 2007; 131 (4): 954–963. doi: 10.1378/chest.06–2100.

73. Mishra G. P., Mulani J. Corticosteroids for COVID-19: the search for an optimum duration of therapy. Lancet Respir Med. 2021; 9 (1): e8. doi: 10.1016/s2213-2600(20)30530-0.

74. Krivoshchekov E. P., Katorkin S. E., El'shin E. B., Romanov V. E. Primenenie sulodeksida na postgospital'nom etape lecheniya patsientov s novoj koronavirusnoj infektsiej COVID-19. Profilakticheskaya Meditsina. 2022; 25 (1): 91–97. doi: 10.17116/profmed20222501191. (in Russian)

75. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 pa tients with coagulopathy. J ThrombHaemost. 2020; 18 (5): 1094–1099. doi: 10.1111/jth.14817.

76. Antonov V. N., Osikov M. V., Ignatova G. L., Zotov S. O. Sovremenny`e terapevticheskie podxody` k korrekcii narushenii gemostaza u bol`ny`x COVID-19 : sistematicheskiĭ obzor. Kubanskiĭ Nauchny`i Medicinskiĭ Vestnik. 2021; 28 (4): 72–84 doi: 10.25207/1608-6228-2021-28-4-72-84. (in Russian)


Review

For citations:


Borukaeva I.Kh., Abazova Z.Kh., Kambachokova Z.A., Kambachokova A.A., Kardanov A.A., Djabrailova M.S., Сhanieva Z.I., Akhmatov Kh.Kh., Abdurakhmanov M.A., Baskariev Sh.M., Mezhikhova E.B., Shogenova D.A. Current Perspective on the Treatment of the Novel Coronavirus Infection COVID-19. Antibiot Khimioter = Antibiotics and Chemotherapy. 2025;70(1-2):88-99. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-1-2-88-99. EDN: PSCHFE

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)