Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Neuropsychopharmacological Aspects of Antibiotic Action

https://doi.org/10.37489/0235-2990-2025-70-1-2-113-123

EDN: ZDBXUZ

Abstract

   The review summarizes current data from experimental and clinical studies on the properties of antibiotics from the point of view of neuropsychopharmacology. Against the background of pronounced antibiotic resistance, the side effects of such drugs are of potential interest. Therefore, the possibility of the latter influencing mental functions, cognitive status, nociceptive system, as well as their involvement in the development of sleep disorders, are of particular interest.

About the Authors

Yu. A. Sergeev
Stavropol State Medical University
Russian Federation

Yuri A. Sergeev, Ph. D. in Medicine, senior lecturer

Department of Pharmacology

Stavropol


Competing Interests:

The authors declare that there is no conflict of interest



E. V. Beyer
Stavropol State Medical University
Russian Federation

Eduard V. Beyer, D. Sc. in Medicine, Associate Professor, Head of the Department

Department of Pharmacology

Stavropol


Competing Interests:

The authors declare that there is no conflict of interest



References

1. Althubyani A. A., Canto S., Pham H., Holger D. J., Rey J. Antibiotic-induced neuropsychiatric toxicity: epidemiology, mechanisms and management strategies — a narrative literature review. Drugs Context. 2024; 13: 2024-3-3. Published 2024 Jul 24; 13: 2024-3-3. doi: 10.7573/dic.2024-3-3.

2. Suárez-Rivero J. M., Pastor-Maldonado C. J., Povea-Cabello S. et al. Mitochondria and antibiotics: for good or for evil? Biomolecules. 2021; 11 (7): 1050. Published 2021 Jul 17. doi: 10.3390/biom11071050.

3. Çakici N., van Beveren N. J. M., Judge-Hundal G., Koola M. M., Sommer I. E. C. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med. 2019; 49 (14): 2307–2319. doi: 10.1017/S0033291719001995.

4. Bichler E. K., Elder C. C., García P. S. Clarithromycin increases neuronal excitability in CA3 pyramidal neurons through a reduction in GABAergic signaling. J Neurophysiol. 2017; 117 (1): 93–103. doi: 10.1152/jn.00134.2016.

5. Mozhokina G. N., Samoilova A. G. Neurotoxic side effects of antimicrobial and anti-tuberculosis drugs. 2020; , 65 (5–6): 78–84. doi: 10.37489/0235-2990-2020-65-5-6-78-82. (in Russian)

6. Luqman A., He M., Hassan A. et al. Mood and microbes : a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry. 2024; 15: 1295766. Published 2024 Feb 9. doi: 10.3389/fpsyt.2024.1295766.

7. Kopera A. F., Khiew Y. C., Amer Alsamman M., Mattar M. C., Olsen R. S., Doman D. B. Depression and the aberrant intestinal microbiome. Gastroenterol Hepatol (N Y). 2024; 20 (1): 30–40.

8. Sasso J. M., Ammar R. M., Tenchov R. et al. Gut microbiome-brain alliance: a landscape view into mental and gastrointestinal health and disorders. ACS Chem Neurosci. 2023; 14 (10): 1717–1763. doi: 10.1021/acschemneuro.3c00127.

9. Ben-Chetrit E., Rothstein N., Munter G. Ciprofloxacin-induced psychosis. Antimicrob Agents Chemother. 2013; 57: 4079. doi: 10.1128/AAC.00672-13.

10. Mulhall J. P., Bergmann L. S. Ciprofloxacin-induced acute psychosis. Urology. 1995; 46: 102–103. doi: 10.1016/S0090-4295(99)80171-X.

11. Reeves R. R. Ciprofloxacin-induced psychosis. Ann. Pharmacother. 1992; 26: 930–931. doi: 10.1177/106002809202600716.

12. Essali N., Miller B. J. Psychosis as an adverse effect of antibiotics. Brain Behav Immun Health. 2020 Sep 19; 9: 100148. doi: 10.1016/j.bbih.2020.100148. PMID: 34589893; PMCID: PMC8474525.

13. Bhattacharyya S., Darby R., Berkowitz A. L. Antibiotic-induced neurotoxicity. Curr Infect Dis Rep. 2014; 16 (12): 448. doi: 10.1007/s11908-014-0448-3.

14. Arain S. I., Al Shakhori M., Thorakkattil S. A., Amin O. Acute psychotic episode induced by antimicrobial treatment. Case Rep Psychiatry. 2023; 2023: 9996763. doi: 10.1155/2023/9996763.

15. Hurkacz M., Dobrek L., Wiela-Hojenska A. Antibiotics and the nervous system — which face of antibiotic therapy is real, Dr. Jekyll (neurotoxicity) or Mr. Hyde (neuroprotection)? Molecules. 2021; 26 (24): 7456. doi: 10.3390/molecules26247456.

16. Haddad N., Carr M., Balian S. et al. The blood-brain barrier and pharmacokinetic/pharmacodynamic optimization of antibiotics for the treatment of central nervous system infections in adults. Antibiotics. 2022; 11 (12): 1843. doi: 10.3390/antibiotics11121843.

17. Walker A. E., Johnson H. C., Kollros J. J. Penicillin convulsions; the convulsive effects of penicillin applied to the cerebral cortex of monkey and man. Surg Gynecol Obstet. 1945; 81: 692–701.

18. Deshayes S., Coquerel A., Verdon R. Neurological adverse effects attributable to β-lactam antibiotics: a literature review. Drug Saf. 2017; 40 (12): 1171–1198. doi: 10.1007/s40264-017-0578-2.

19. Prieto-Gonzalez S., Escoda R., Coloma E., Grau J. M. Amoxicillin-induced acute aseptic meningitis. J Clin Neurosci. 2011; 18 (3): 443–444. doi: 10.1016/j.jocn.2010.07.122.

20. Fan Z., He Y., Sun W., Li Z., Ye C., Wang C. Amoxicillin-induced aseptic meningitis: clinical features, diagnosis and management. Eur J Med Res. 2023; 28 (1): 301. doi: 10.1186/s40001-023-01251-y.

21. Ceylani T., Jakubowska-Doğru E., Gurbanov R., Teker H. T., Gozen A. G. The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age. Heliyon. 2018 Jun 4; 4 (6): e00644. doi: 10.1016/j.heliyon.2018.e00644.

22. Failla M. D., Juengst S. B., Arenth P. M., Wagner A. K. Preliminary associations between brain-derived neurotrophic factor, memory impairment, functional cognition, and depressive symptoms following severe TBI. Neurorehabil Neural Repair. 2016; 30 (5): 419–430. doi: 10.1177/1545968315600525.

23. Khasani S. Cefepime-induced jaw myoclonus. Neurology. 2015; 84 (11): 1183. doi: 10.1212/WNL.0000000000001365.

24. Dakdouki G. K., Al-Awar G. N. Cefepime-induced encephalopathy. Int J Infect Dis. 2004; 8 (1): 59–61. doi: 10.1016/j.ijid.2003.09.003.

25. Chow K. M., Szeto C. C., Hui A. C. F., Wong T. Y. H., Li P. K. T. Retrospective review of neurotoxicity induced by cefepime and ceftazidime. Pharmacotherapy. 2003; 23 (3): 369–373. doi: 10.1592/phco.23.3.369.32100.

26. Martınez-Rodrıguez J. E., Barriga F. J., Santamaria J. et al. Nonconvulsive status epilepticus associated with cephalosporins in patients with renal failure. Am J Med.2001; 111 (2): 115–119. doi: 10.1016/s0002-9343(01)00767-7.

27. Bhattacharyya S., Darby R. R., Raibagkar P., Gonzalez Castro L. N., Berkowitz A. L. Antibiotic-associated encephalopathy. Neurology. 2016; 86 (10): 963–971. doi: 10.1212/WNL.0000000000002455.

28. Roncon-Albuquerque R., Pires I., Martins R., Real R., Sousa G., von Hafe P. Ceftriaxone induced acute reversible encephalopathy in a patient treated for a urinary tract infection.Neth J Med. 2009; 67 (2): 72–75.

29. Landais A., Marty N., Bessis D., Pages M., Blard J. M. Hoigne syndrome following an intravenous injection of ceftriaxone: a case report. Rev Med Interne. 2014; 35 (3): 199–201. doi: 10.1016/j.revmed.2013.02.027.

30. Han Y., Zheng Y., Zhang J., Hu C. Neurobehavioral effects of cephalosporins: assessment of locomotors activity, motor and sensory development in zebrafish. Front. Pharmacol. 2018; 9: 160. doi: 10.3389/fphar.2018.00160.

31. Cannon J. P., Lee T. A., Clark N. M., Setlak P., Grim S. A. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother. 2014; 69 (8): 2043–2055. doi: 10.1093/jac/dku111.

32. Stefano G. B., Samuel J., Kream R. M. Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med. Sci. Monit. 2017; 23: 101–106. doi: 10.12659/MSM.899478.

33. Salama A., Mahmoud H. A., Kandeil M. A., Khalaf M. M. Neuroprotective role of camphor against ciprofloxacin induced depression in rats: modulation of Nrf-2 and TLR4. Immunopharmacol Immunotoxicol. 2021; 43 (3): 309–318. doi: 10.1080/08923973.2021.1905658.

34. Khalaf M. M., Mahmoud H. M., Kandeil M. A., Mahmoud H. A., Salama A. A. Fumaric acid protects rats from ciprofloxacin-provoked depression through modulating TLR4, Nrf-2, and p190-rho GTP. Drug Chem Toxicol. 2024; 47 (6): 897–908. doi: 10.1080/01480545.2024.2310641.

35. Hoffmann M., Russmann S., Niedrig D. F. Severe CNS depression with duloxetine, ciprofloxacin and CYP2D6 deficiency-role and recognition of drug-drug-gene interactions. Eur J Clin Pharmacol. 2022; 78 (4): 703–705. doi: 10.1007/s00228-022-03278-2.

36. Xie W. L., Ge M. L., Chen D., Chen G. Q., Mei Y. X., Lai Y. J. Psychiatric disorders associated with fluoroquinolones: a pharmacovigilance analysis of the FDA adverse event reporting system database. Front Pharmacol. 2024 Oct 14; 15: 1435923. doi: 10.3389/fphar.2024.1435923. PMID: 39469624; PMCID: PMC11513374.

37. Abusafiyah N., Soulen M. C. Driving patients crazy: acute neuropsychiatric toxicities of commonly prescribed antibiotics in IR. J Vasc Interv Radiol. 2023; 34 (10): 1722–1724. doi: 10.1016/j.jvir.2023.06.010.

38. Shishkina G. T., Lanshakov D. A., Bannova A. V., Kalinina T. S., Agarina N. P., Dygalo N. N. Doxycycline Used for Control of Transgene Expression has its Own Effects on Behaviors and Bcl-xL in the Rat Hippocampus. Cell Mol Neurobiol. 2018; 38 (1): 281–288. doi: 10.1007/s10571-017-0545-6.

39. Wang X., Wang L., Luo M. et al. Integrated lipidomic and transcriptomic analysis reveals clarithromycin-induced alteration of glycerophospholipid metabolism in the cerebral cortex of mice. Cell Biol Toxicol. 2023; 39 (3): 771–793. doi: 10.1007/s10565-021-09646-5.

40. Zareifopoulos N., Panayiotakopoulos G. Neuropsychiatric effects of antimicrobial agents. Clin Drug Investig. 2017; 37 (5): 423–437. doi: 10.1007/s40261-017-0498-z.

41. Sergeev Yu. A., Bejer E. V. Anksiogennopodobnyj effekt antibioticheskikh preparatov. Tverskoj Meditsinskij Zhurnal. 2024; 5: 217–220.

42. Agarwal A., Kanekar S., Sabat S., Thamburaj K. Metronidazole-induced cerebellar toxicity. Neurol Int. 2016 Apr 1; 8 (1): 6365. doi: 10.4081/ni.2016.6365. PMID: 27127600; PMCID: PMC4830366.

43. Bangert M. K., Hasbun R. Neurological and psychiatric adverse effects of antimicrobials. CNS Drugs. 2019; 33 (8): 727–753. doi: 10.1007/s40263-019-00649-9.

44. Rezaei N. J., Bazzazi A. M., Naseri Alavi S. A. Neurotoxicity of the antibiotics: a comprehensive study. Neurol India. 2018; 66 (6): 1732–1740. doi: 10.4103/0028-3886.246258.

45. Desbonnet L., Clarke G., Traplin A., O’Sullivan O., Crispie F., Moloney R. D., Cotter P. D., Dinan T. G., Cryan J. F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun. 2015; 48: 165–173. doi: 10.1016/j.bbi.2015.04.004.

46. O’Mahony S. M., Clarke G., Dinan T. G., Cryan J. F. Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle? Neuroscience. 2017; 342: 37–54. doi: 10.1016/j.neuroscience.2015.09.068.

47. Socała K., Doboszewska U., Szopa A. et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res. 2021; 172: 105840. doi: 10.1016/j.phrs.2021.105840.

48. Pouranayatihosseinabad M., Bezabih Y., Hawrelak J., Peterson G. M., Veal F., Mirkazemi C. Antibiotic use and the development of depression : a systematic review. J Psychosom Res. 2023; 164: 111113. doi: 10.1016/j.jpsychores.2022.111113.

49. Clarke G., O’Mahony S. M., Dinan T. G., Cryan J. F. Priming for health: Gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr. 2014; 103: 812–819. doi: 10.1111/apa.12674.

50. Borre Y. E., O’Keeffe G. W., Clarke G., Stanton C., Dinan T. G., Cryan J. F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014; 20: 509–518. doi: 10.1016/j.molmed.2014.05.002.

51. Slykerman R. F., Thompson J., Waldie K. E., Murphy R., Wall C., Mitchell E. A. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr. 2017; 106: 87–94. doi: 10.1111/apa.13613.

52. Lavebratt C., Yang L. L., Giacobini M., Forsell Y., Schalling M., Partonen T., Gissler M. Early exposure to antibiotic drugs and risk for psychiatric disorders: a population-based study. Transl Psychiatry. 2019; 9: 317. doi: 10.1038/s41398-019-0653-9.

53. Hayer S. S., Hwang S., Clayton J. B. Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents : a systematic review and meta-analysis. Front Neurosci. 2023; 17: 1237177. Published 2023 Sep 1. doi: 10.3389/fnins.2023.1237177.

54. Olavarría-Ramírez L., Cooney-Quane J., Murphy G., McCafferty C. P., Cryan J. F., Dockray S. A systematic review of the effects of gut microbiota depletion on social and anxiety-related behaviours in adult rodents: Implications for translational research. Neurosci Biobehav Rev. 2023; 145: 105013. doi: 10.1016/j.neubiorev.2022.105013.

55. Kerman I. A., Glover M. E., Lin Y. et al. Antibiotic exposure is associated with decreased risk of psychiatric disorders. Front Pharmacol. 2024; 14: 1290052. doi: 10.3389/fphar.2023.1290052.

56. Yang G., Cao Y., Wang P., Mei L., Chen J., Lu W. Minocycline pretreatment prevents blood-brain barrier disruption in septic rats. J Surg Res. 2022; 273: 247–254. doi: 10.1016/j.jss.2022.01.021.

57. Arvin K. L., Han B. H., Du Y., Lin S. Z., Paul S. M., Holtzman D. M. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann. Neurol. 2002; 52: 54–61. doi: 10.1002/ana.10242.

58. Tikka T., Fiebich B. L., Goldsteins G., Keinanen R., Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001 Apr 15; 21 (8): 2580–2588. doi: 10.1523/JNEUROSCI.21-08-02580.2001.

59. Paldino E., Balducci C., La Vitola P., Artioli L., D'Angelo V, Giampà C., Artuso V., Forloni G., Fusco F. R. Neuroprotective effects of doxycycline in the R6/2 mouse model of Huntington's disease. Mol Neurobiol. 2020 Apr; 57 (4): 1889–1903. doi: 10.1007/s12035-019-01847-8.

60. Illarioshkin S. N., Klyushnikov S. A., Vigont V. A., Seliverstov Y. A., Kaznacheyeva E. V. Molecular pathogenesis in Huntington’s disease. Biochemistry. 2018; 83: 1030–1039. doi: 10.1134/S0006297918090043.

61. Zuccato C., Ciammola A., Rigamonti D., Leavitt B. R., Goffredo D., Conti L., MacDonald M. E., Friedlander R. M., Silani V., Hayden M. R. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science. 2001; 293: 493–498. doi: 10.1126/science.1059581.

62. Jiang D., Cui H., Xie N., Banerjee S., Liu R. M., Dai H., Thannickal V. J., Liu G. ATF4 mediates mitochondrial unfolded protein response in alveolar epithelial cells. Am J Respir Cell Mol. Biol. 2020; 63: 478–489. doi: 10.1165/rcmb.2020-0107OC.

63. Yang M., Luo S., Chen W. et al. Mitochondrial unfolded protein response (mtUPR) and diseases. Curr Med Chem. Published online August 22, 2023. doi: 10.2174/0929867331666230822095924.

64. Issy A. C., Pedrazzi J. F. C., van Oosten A. B. S. et al. Effects of doxycycline in swiss mice predictive models of schizophrenia. Neurotox Res. 2020; 38 (4): 1049–1060. doi: 10.1007/s12640-020-00268-z.

65. Reis D. J., Casteen E. J., Ilardi S. S. The antidepressant impact of minocycline in rodents : a systematic review and meta-analysis. Sci Rep. 2019; 9 (1): 261. Published 2019 Jan 22. doi: 10.1038/s41598-018-36507-9.

66. Cai D. B., Zheng W., Zhang Q. E. et al. Minocycline for depressive symptoms: a meta-analysis of randomized, double-blinded, placebo-controlled trials. Psychiatr Q. 2020; 91 (2): 451–461. doi: 10.1007/s11126-019-09707-3.

67. Vogt M. A., Mallien A. S., Pfeiffer N., Inta I., Gass P., Inta D. Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice. Behav Brain Res. 2016; 301: 96–101. doi: 10.1016/j.bbr.2015.12.015.

68. O'Brien J. A., Austin P. J. Minocycline abrogates individual differences in nerve injury-evoked affective disturbances in male rats and prevents associated supraspinal neuroinflammation. J Neuroimmune Pharmacol. 2024; 19 (1): 30. Published 2024 Jun 15. doi: 10.1007/s11481-024-10132-y.

69. Hellmann-Regen J., Clemens V., Grözinger M. et al. Effect of minocycline on depressive symptoms in patients with treatment-resistant depression: a randomized clinical trial. JAMA Netw Open. 2022; 5 (9): e2230367. Published 2022 Sep 1. doi: 10.1001/jamanetworkopen.2022.30367.

70. Nettis M. A., Lombardo G., Hastings C. et al. The interaction between kynurenine pathway, suicidal ideation and augmentation therapy with minocycline in patients with treatment-resistant depression. J Psychopharmacol. 2023; 37 (6): 531–538. doi: 10.1177/02698811231173588.

71. Husain M. I., Chaudhry I. B., Khoso A. B. et al. Minocycline and celecoxib as adjunctive treatments for bipolar depression: a multicentre, factorial design randomised controlled trial. Lancet Psychiatry. 2020; 7 (6): 515–527. doi: 10.1016/S2215-0366(20)30138-3.

72. Ostroumova O. D., Kulikova M. I., Ostroumova T. M., Chernyaeva M. S., Kochetkov A. I., Parfenov V. A. Lekarstvenno-indutsirovannye kognitivnye narusheniya. Nevrologiya, Nejropsikhiatriya, Psikhosomatika. 2020; 12 (3): 11–18. (in Russian)

73. Usenko D. V. Antibiotik-indutsirovannye izmeneniya mikrobioma zheludochno-kishechnogo trakta i ikh korrektsiya. RMZh. 2018; 2 (II): 96–99. (in Russian)

74. Popova A. Yu., Ploskireva A. A., Kulikova N. G., Bityumina L. A., Chemedenko A. F., Safandeev V. V., Poroshin M. A., Evdokimov N. D., Vostrikova M. V., Vinogradova A. I., Latipova R. I., Bidevkina M. V., Bogdanova A. V., Sinitskaya T. A., Kuz'min S. V., Gorelov A. V. Vliyanie antibiotik- assotsiirovannykh narushenij mikrobiotsenoza kishechnika na kognitivnye funktsii. Eksperimental'noe issledovanie. Eksperimental'naya i klinicheskaya gastroenterologiya. 2023; 215 (7): 94–101. doi: 10.31146/1682-8658-ecg-215-7-94-101. (in Russian)

75. Kulagina Yu. O., Belyakov V. I. Vliyanie farmakologicheskoj modeli narusheniya kishechnoj mikrobioty na povedencheskie reaktsii krys. Patogenez. 2024; 22 (2): 55–58 doi: 10.25557/2310-0435.2024.02.55-58. (in Russian)

76. Lee K. E., Kim J. K., Kim D. H. Orally administered antibiotics vancomycin and ampicillin cause cognitive impairment with gut dysbiosis in mice with transient global forebrain ischemia. Front Microbiol. 2020; 11: 564271. Published 2020 Nov 26. doi: 10.3389/fmicb.2020.564271.

77. Shahar S., Arimuthu D. A., Mazlan S. A. Ertapenem-induced neurotoxicity in an end-stage renal disease patient on intermittent haemodialysis: a case report. BMC Nephrol. 2022; 23 (1): 360. Published 2022 Nov 8. doi: 10.1186/s12882-022-02980-8.

78. Triplett J. D., Lawn N. D., Chan J., Dunne J. W. Cephalosporin-related neurotoxicity: metabolic encephalopathy or non-convulsive status epilepticus? J Clin Neurosci. 2019; 67: 163–166. doi: 10.1016/j.jocn.2019.05.035.

79. Zhang Y., Fan M., Tsie N. T.Y. et al. Association between oral fluoroquinolones and neuropsychiatric events: self-controlled case series with active comparator design. Pharmacoepidemiol Drug Saf. 2024; 33 (10): e70036. doi: 10.1002/pds.70036.

80. Li J., Pu F., Peng C. et al. Antibiotic cocktail-induced gut microbiota depletion in different stages could cause host cognitive impairment and emotional disorders in adulthood in different manners. Neurobiol Dis. 2022; 170: 105757. doi: 10.1016/j.nbd.2022.105757.

81. Fröhlich E. E., Farzi A., Mayerhofer R. et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun. 2016; 56: 140–155. doi: 10.1016/j.bbi.2016.02.020.

82. Dahiya D., Nigam P. S. Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota-brain axis and cognition: restoration by intake of probiotics and synbiotics. Int J Mol Sci. 2023; 24 (4): 3074. Published 2023 Feb 4. doi: 10.3390/ijms24043074.

83. Ye Y., Tong H. Y. K., Chong W. H. et al. A systematic review and meta-analysis of the effects of long-term antibiotic use on cognitive outcomes. Sci Rep. 2024; 14 (1): 4026. Published 2024 Feb 18. doi: 10.1038/s41598-024-54553-4.

84. Wierzbiński P., Hubska J., Henzler M., Kucharski B., Bieś R., Krzystanek M. Depressive and other adverse CNS effects of fluoroquinolones. Pharmaceuticals (Basel). 2023; 16 (8): 1105. Published 2023 Aug 4. doi: 10.3390/ph16081105.

85. Forthun I., Eliassen K. E. R., Emberland K. E., Bjorvatn B. The association between self-reported sleep problems, infection, and antibiotic use in patients in general practice. Front Psychiatry. 2023; 14: 1033034. Published 2023 Mar 2. doi: 10.3389/fpsyt.2023.1033034.

86. Trapeznikova A. Yu. Vzaimosvyaz' narushenij sna s izmeneniyami mikrobioty kishechnika. Meditsina: teoriya i praktika. 2022; 7: 3: 23–29, https://ojs3.gpmu.org/index.php/med-theory-and-practice/article/view/4704. (in Russian)

87. Ogawa Y., Miyoshi C., Obana N. et al. Gut microbiota depletion by chronic antibiotic treatment alters the sleep/wake architecture and sleep EEG power spectra in mice. Sci Rep. 2020; 10 (1): 19554. Published 2020 Nov 11. doi: 10.1038/s41598-020-76562-9.

88. Gu L., Ni Y., Wang B. et al. Antibiotic exposure associated with nighttime sleep duration and daytime sleepiness in newlyweds. Environ Sci Pollut Res Int. 2024; 31 (4): 6350–6371. doi: 10.1007/s11356-023-31475-8.

89. Kinoshita H., Hagiwara Y., Ishii T. et al. Doxorubicin combined with ifosfamide for sarcoma induces muscle atrophy and sleep disruption. Anticancer Res. 2021; 41 (12): 6273–6278. doi: 10.21873/anticanres.15448.

90. Shouse M. N. Sleep deprivation increases susceptibility to kindled and penicillin seizure events during all waking and sleep states in cats. Sleep. 1988; 11 (2): 162–171. doi: 10.1093/sleep/11.2.162.

91. Ahmed A., Misrani A., Tabassum S., Yang L., Long C. Minocycline inhibits sleep deprivation-induced aberrant microglial activation and Keap1-Nrf2 expression in mouse hippocampus. Brain Res Bull. 2021; 174: 41–52. doi: 10.1016/j.brainresbull.2021.05.028.

92. Yu C., Xiao J. H. The Keap1-Nrf2 System: a mediator between oxidative stress and aging. Oxid Med Cell Longev. 2021; 2021: 6635460. Published 2021 Apr 19. doi: 10.1155/2021/6635460.

93. Wisor J. P., Schmidt M. A., Clegern W. C. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep. 2011; 34 (3): 261–272. Published 2011 Mar 1. doi: 10.1093/sleep/34.3.261.

94. Lavigna G., Masone A., Bouybayoune I. et al. Doxycycline rescues recognition memory and circadian motor rhythmicity but does not prevent terminal disease in fatal familial insomnia mice. Neurobiol Dis. 2021; 158: 105455. doi: 10.1016/j.nbd.2021.105455.

95. Han C. J., Shen Z., Tang M., Jiang W., Gao T. Antinociceptive effects of cefadroxil and ceftriaxone in experimental animal models of pain. Neuro Endocrinol Lett. 2023; 44 (5): 309–320.

96. Baeza-Flores G. D. C., Rodríguez-Palma E. J., Reyes-Pérez V., Guzmán-Priego C. G., Torres-López J. E. Antinociceptive effects of ceftriaxone in formalin-induced nociception. Drug Dev Res. 2020; 81 (6): 728–735. doi: 10.1002/ddr.21680.

97. Ding W., You Z., Chen Q. et al. Gut microbiota influences neuropathic pain through modulating proinflammatory and anti-inflammatory Tcells. Anesth Analg. 2021; 132 (4): 1146–1155. doi: 10.1213/ANE.0000000000005155.

98. Kristensen P. J., Gegelashvili G., Munro G., Heegaard A. M., Bjerrum O. J. The β-lactam clavulanic acid mediates glutamate transport-sensitive pain relief in a rat model of neuropathic pain. Eur J Pain. 2018; 22 (2): 282–294. doi: 10.1002/ejp.1117.

99. Martín-Escura C., Medina-Peris A., Spear L. A. et al. β-Lactam T. R.PM8 antagonist RGM8-51 displays antinociceptive activity in different animal models. Int J Mol Sci. 2022; 23 (5): 2692. doi: 10.3390/ijms23052692.


Review

For citations:


Sergeev Yu.A., Beyer E.V. Neuropsychopharmacological Aspects of Antibiotic Action. Antibiot Khimioter = Antibiotics and Chemotherapy. 2025;70(1-2):113-123. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-1-2-113-123. EDN: ZDBXUZ

Views: 158


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)