Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Potential of Photodynamic Inactivation with Porphyrins Against Planktonic and Biofilm Forms of Antibiotic-Resistant Wound Infection Pathogens

https://doi.org/10.37489/0235-2990-2025-70-3-4-12-22

EDN: DWPAIR

Abstract

Antimicrobial photodynamic inactivation is of particular interest in the context of the global spread of antimicrobial resistance. Aim. Evaluation of the effect of porphyrins on planktonic and biofilm forms of wound infection pathogens during photodynamic inactivation in vitro. Methods. Objects: asymmetric water-soluble porphyrins containing heterocyclic fragments on the periphery of the porphyrin cycle: residues of benzoxazole (O-por), N-methyl benzimidazole (N-por) and benzothiazole (S-por). Microorganisms: planktonic forms (N=91): clinical isolates from wound discharge with a predominance of gram-positive microorganisms; biofilms (N=20). Irradiation parameters: light source — LED lamp (white light) 20 W, maximum luminous flux 1500–1800 Lm; exposure time: 10, 15, 30, 60 minutes. The bactericidal effect of porphyrins on planktonic forms was studied using the «sterile» stain method. The destructive activity of porphyrins to biofilms was assessed by changes in optical density. Results. Antibiotic resistance was determined in 84.9% of the strains (95% CI 65.3–97.5). Three porphyrin compounds provided a high level of lysis of 94.5% of antibiotic-resistant and antibiotic-sensitive strains (N=86; 95% CI 86.7–102.3) after 10 minutes of irradiation. Porphyrins did not have a bactericidal effect on 5.5% of the strains (N=5; 95% CI 14.9–25.9); 80% (N=4) of these strains were gram-negative microorganisms. The activity of S-por and N-por porphyrins ranged from weak biofilm destruction to no effect, and the absence of destructive activity was determined for O-por. Conclusions. Porphyrins have a pronounced bactericidal potential against planktonic forms of gram-positive pathogens of infectious diseases, including those with antibiotic resistance. Some types of molecules (N-por, S-por) led to weak biofilm degradation.

About the Authors

D. V. Kvashnina
Privolzhsky Research Medical University
Russian Federation

Daria V. Kvashnina — Ph. D. in Medicine, Associate Professor of the Department of Epidemiology, Microbiology and Evidence-Based

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



I. Yu. Shirokova
Privolzhsky Research Medical University
Russian Federation

Irina Yu. Shirokova — Ph. D. in Medicine, Head of the Bacteriological laboratory, bacteriologist,

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



N. A. Belyanina
Privolzhsky Research Medical University
Russian Federation

Natalia A. Belyanina — Biologist of the bacteriological laboratory of the University Clinic

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



S A. Syrbu
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Sergey A. Syrbu — D. Sc. in Chemistry, Head of the laboratory «New Materials based on macrocyclic compounds»

Ivanovo


Competing Interests:

Конфликт интересов отсутствует



N. Sh. Lebedeva
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Nataliya Sh. Lebedeva — D. Sc. in Chemistry, Head of the Laboratory «Physical Chemistry of supramolecular systems based on macrocyclic compounds and polymers»

Ivanovo


Competing Interests:

Конфликт интересов отсутствует



Z. V. Boeva
Privolzhsky Research Medical University
Russian Federation

Zhanna V. Boeva — Laboratory assistant of the research department

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



A. A. Burashnikova
Privolzhsky Research Medical University
Russian Federation

Anastasiia A. Burashnikova — Laboratory assistant of the research department

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



O. V. Kovalishena
Privolzhsky Research Medical University
Russian Federation

Olga V. Kovalishena — D. Sc. in Medicine, Head of the Department of Epidemiology, Microbiology and EvidenceBased Medicine

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



N. V. Saperkin
Privolzhsky Research Medical University
Russian Federation

Nikolai V. Saperkin — Ph. D. in Medicine, Associate Professor of the Department of Epidemiology, Microbiology and Evidence-Based

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



D. K. Lazarev
Privolzhsky Research Medical University
Russian Federation

Daniil K. Lazarev — Student

Nizhny Novgorod


Competing Interests:

Конфликт интересов отсутствует



References

1. Pérez-Laguna V., García-Luque I., Ballesta S., Rezusta A., Gilaberte Y. Photodynamic therapy combined with antibiotics or antifungals against microorganisms that cause skin and soft tissue infections: a planktonic and biofilm approach to overcome resistances. Pharmaceuticals (Basel). 2021; 23; 14 (7): 603. doi: 10.3390/ph14070603

2. World health statistics 2024: monitoring health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.

3. Rasporyazhenie Pravitel`stva Rossijskoj Federacii ot 25 sentyabrya 2017 goda N 2045-r «Ob utverzhdenii «Strategii preduprezhdeniya rasprostraneniya antimikrobnoj rezistentnosti v Rossijskoj Federacii na period do 2030 goda». (in Russian)

4. Mishutina O. L., Volchenkova G. V., Kovaleva N. S., Vasiltsova O. A., Fakhradova V. A. Photodynamic therapy in dentistry (literature review). Smolensk Medical Almanac. 2019; 3: 102–111. EDN PMCRWJ. (in Russian)

5. Shanazarov N. А., Zinchenko S. V., Kisikova S. D., Rizvanov A. A., Smailova S., Petukhov K. A. et al. Photodynamic therapy in the treatment of HPV-associated cervical cancer: mechanisms, challenges and future prospects. Biomedical Photonics. 2024; 13 (1): 47–55. doi: 10.24931/2413-9432-2023-13-1-47-55.

6. Sukovatykh B. S., Grigoryan A. Yu., Begin A. I. Microbial biofilm in the development of wound process. Journal of experimental and clinical surgery. 2022; 15: 1: 92–96. doi: https://doi.org/10.18499/2070-478X-2022-15-1-92-96. (in Russian)

7. de Melo W. C., Avci P., de Oliveira M. N., Gupta A., Vecchio D. et al. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti Infect Ther. 2013 Jul; 11 (7): 669–693. doi: 10.1586/14787210.2013.811861.

8. Guffey J. S., Payne W., Jones T., Martin K. Evidence of resistance development by Staphylococcus aureus to an in vitro, multiple stage application of 405 nm light from a supraluminous diode array. Photomed Laser Surg. 2013; 31: 179–82. doi: 10.1089/pho.2012.3450.

9. Amin R. M., Bhayana B., Hamblin M. R., Dai T. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: in vitro and in vivo studies. Lasers Surg Med. 2016; 48: 562–568. doi: 10.1002/lsm.22474.

10. Pieranski M., Sitkiewicz I., Grinholc M. Increased photoinactivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments. Free Radic Biol Med. 2020; 160: 657–669. doi: 10.1016/j.freeradbiomed.2020.09.003.

11. Rapacka-Zdonczyk A., Wozniak A., Pieranski M., Woziwodzka A., Bielawski K. P., Grinholc M. Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment. Sci Rep. 2019; 9: 1–18. doi: 10.1038/s41598-019-45962-x.

12. Astuti S. D., Mahmud A. F., Putra A. P., Setiawatie E. M., Arifianto D. Effectiveness of bacterial biofilms photodynamic inactivation mediated by curcumin extract, nanodoxycycline and laser diode. Biomedical Photonics. 2020; 9 (4): 4–14. doi: 10.24931/2413–9432–2020-9–4–4–14.

13. Lebedeva N. Sh., Koifman O. I. Supramolecular systems based on macrocyclic compounds with proteins. Application prospects. Russian Journal of Bioorganic Chemistry. 2022; 48 (1): 3–31. doi: https://doi.org/10.31857/S0132342322010079. (in Russian)

14. The European Committee on Antimicrobial Susceptibility Testing. Break point tables for interpretation of MICs and zone diameters– version 13.0; 2023.

15. Aslanov B. I., Zueva L. P., Punchenko O. E., Kaftyreva L. A., Akimkin V. G., Dolgii A. A. et al. Rational use of bacteriophages in therapeutic and anti-epidemic practice: Federal clinical guidelines. 2022: 32. (in Russian)

16. Nemchenko U. M., Kungurtseva E. A., Grigorova E. V., Bel'kova N. L., Markova Yu. A., Noskova O. A. et al. Simulation of bacterial biofilms and estimation of the sensitivity of healthcare-associated infection pathogens to bactericide Sekusept active. Klin Lab Diagn. 2020; 65 (10): 652–658. doi: https://doi.org/10.18821/0869-2084-2020-65-10-652-65. (in Russian)

17. R Core Team; R Foundation for Statistical Computing (Hrsg.): R: A Language and Environment for Statistical Computing. Vienna, Austria, 2022

18. Kiselev A. N., Lebedev M. A., Syrbu S. A., Yurina E. S., Gubarev Yu. A., Lebedeva N. Sh. et al. Synthesis and study of water-soluble asymmetric cationic porphyrins as potential photoinactivators of pathogens. Russian Chemical Bulletin. 2022; 71 (12): 2691–2700. EDN VXSHHH. (in Russian)

19. Naumovich S. A., Plavskii V. Yu., Kuvshinov A. V. Antimicrobial photodynamic therapy: advantages, disadvantages and development prospects. Sovremennaya stomatologiya. 2020; 1 (78): 11–16. EDN INLZNY. (in Russian)

20. Logunova E. V., Nasedkin A. N. Modern view on antimicrobial photodynamic therapy (review of literature). Laser Medicine. 2015; 19 (2): 44–52. (in Russian)

21. Tiganova I. G., Makarova E. A., Meerovich G. A., Alekseeva N. V., Tolordava E. R., Zhizhimova Yu. S. et al. Photodynamic inactivation of pathogenic bacteria in biofilms using new synthetic bacteriochlorin derivatives. Biomedical Photonics. 2017; 6 (4): 27–36. doi: https://doi.org/10.24931/2413-9432-2017-6-4-27-36. (in Russian)

22. Gel'fand B. R., Kubyshkin V. A., Kozlov R. S., Khachatryan N. N. Khirurgicheskie infektsii kozhi i myagkikh tkanei: rossiiskie natsional'nye rekomendatsii. 2015: 109. ISBN 978-5-4316-0235-1 (in Russian)

23. Weiner-Lastinger L. M., Abner S., Edwards J. R. et al. Antimicrobialresistant pathogens associated with adult healthcare-associated infections: summary of data reported to the national healthcare safety network, 2015-2017. Infect Control Hosp Epidemiol. 2020; 41 (1): 1–18. doi: 10.1017/ice.2019.296

24. Sperandio F. F., Huang Y. Y., Hamblin M. R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat Antiinfect Drug Discov. 2013; 8 (2): 108–120. doi: 10.2174/1574891x113089990012

25. Kustov A. V. Natural chlorin photosensitizers and potentiating agents for antimicrobial photodynamic therapy. Izvestiya Vysshikh Uchebnykh Zavedenii. Khimiya i Khimicheskaya Tekhnologiya. 2023; 66 (12): 32–40. doi: https://doi.org/10.6060/ivkkt.20236612.6902. (in Russian).


Review

For citations:


Kvashnina D.V., Shirokova I.Yu., Belyanina N.A., Syrbu S.A., Lebedeva N.Sh., Boeva Z.V., Burashnikova A.A., Kovalishena O.V., Saperkin N.V., Lazarev D.K. Potential of Photodynamic Inactivation with Porphyrins Against Planktonic and Biofilm Forms of Antibiotic-Resistant Wound Infection Pathogens. Antibiot Khimioter = Antibiotics and Chemotherapy. 2025;70(3-4):12-22. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-3-4-12-22. EDN: DWPAIR

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)