Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Resistance Analysis of Vibrio сholerae Isolated in Russia to Quinolones and Beta-Lactams

https://doi.org/10.37489/0235-2990-2025-70-5-6-4-10

EDN: GMILDB

Abstract

   The circulation of antibiotic-resistant strains of Vibrio cholerae in the world requires dynamic monitoring.

   The aim of the study was to assess the level of sensitivity/resistance of V. cholerae to representatives of quinolones (including fluoroquinolones) and beta-lactams.

   Material and methods. The serial dilution method was used to determine the minimum inhibitory concentrations (MICs) of nalidic acid, ciprofloxacin, ampicillin, and ceftriaxone for 682 strains of V. cholerae isolated in Russia in 2005–2020 from humans and environmental objects.

   Results. All toxigenic strains and 20.4 % of non-toxigenic strains were resistant to nalidixic acid; 30 to 50 % of toxigenic strains and 5.4 % of non-toxigenic strains were resistant to ceftriaxone. No resistance to imipenem was detected. In the presence of resistance genes to fluoroquinolones and beta-lactams, about half of the cultures were characterized by sensitivity to these antibiotics in vitro. Consequently, there is a risk of the emergence of antibiotic-resistant forms of the cholera pathogen during the process of etiotropic therapy of the infection, which dictates the need to monitor the sensitivity/resistance of vibrios to fluoroquinolones or beta-lactams during treatment with these antibiotics.

About the Authors

N. A. Selyanskaya
Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor
Russian Federation

Nadezhda A. Selyanskaya, Ph. D. in Medicine, Senior Researcher

Department of Microbiology of Cholera

Rostov-on-Don


Competing Interests:

There was no conflict of interest in the preparation of this article



S. O. Vodopyanov
Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor
Russian Federation

Sergey O. Vodopyanov, D. Sc. in Medicine, Leading Researcher, Acting Head of the Laboratory

Laboratory of Microbial Biochemistry

Rostov-on-Don


Competing Interests:

There was no conflict of interest in the preparation of this article



A. S. Vodopyanov
Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor
Russian Federation

Alexey S. Vodopyanov, Ph. D. in Medicine, Senior Researcher

Virology Group

Rostov-on-Don


Competing Interests:

There was no conflict of interest in the preparation of this article



L. A. Egiazaryan
Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor
Russian Federation

Liana A. Egiazaryan, Junior Researcher

Laboratory of Biological Safety and Treatment of Especially Dangerous Infections

Rostov-on-Don


Competing Interests:

There was no conflict of interest in the preparation of this article



V. D. Kruglikov
Rostov-on-Don Antiplague Scientific Research Institute of Rospotrebnadzor
Russian Federation

Vladimir D. Kruglikov, Dr. Sc. in Medicine, Chief Researcher,
Acting Head of the Department

Departmentof Microbiology of Cholera

Rostov-on-Don


Competing Interests:

There was no conflict of interest in the preparation of this article



References

1. Global Task Forceon Cholera Control. Cholera Outbreak: Assessing the Outbreak Response and Improving Preparedness. Geneva: World Health Organization, 2004.

2. Chatterjee P., Kanungo S., Bhattacharya S. K., Dutta Sh. Mapping cholera outbreaks and antibiotic resistant Vibrio cholerae in India : An assessment of existing data and a scoping review of the literature. Vaccine. 2020; 38 (1): A93–A104. doi: 10.1016/j.vaccine.2019.12.003.

3. Yakovlev V. P. Antimikrobnye preparaty gruppy ftorkhinolonov. Consilium Medicum. 2012; 14 (4): 8–14. (in Russian)

4. Sanitarno-epidemiologicheskie pravila SP 3.1.1.2521-09. Profilaktika kholery. Obshchie trebovaniya k epidemiologicheskomu nadzoru za kholeroi na territorii Rossiiskoi Federatsii. Federal'nyi tsentr gossanepidnadzora Minzdrava Rossii. Moscow: 2009; 85. (in Russian)

5. Metodicheskie ukazaniya 3.4.1030 Sanitarnaya okhrana territorii. Organizatsiya, obespechenie i otsenka protivoepidemicheskoi gotovnosti meditsinskikh uchrezhdenii k provedeniyu meropriyatii v sluchae zavoza ili vozniknoveniya osobo opasnykh infektsii, kontagioznykh virusnykh gemorragicheskikh likhoradok, infektsionnykh boleznei neyasnoi etiologii, predstavlyayushchikh opasnost' dlya naseleniya RF i mezhdunarodnogo soobshcheniya. Moscow: 2001; 64. (in Russian)

6. Roy S. K., Islam A., Ali R., Islam K. E., Khan R. A., Ara S. H., Saifuddin N. M., Fuchs G. J. A randomized clinical trial to compare the efficacy of erythromycin, ampicillin and tetracycline for the treatment of cholera in children. Trans Roy Soc Trop Med Hyg. 1998; 92 (4): 460–462. doi: 10.1016/s0035-9203(98)91094-x.

7. Clark R. B. Antibiotic susceptibilities of the Vibrionaceae to meropenem and other antimicrobial agents. Diagn Microbiol Infect Dis. 1992; 15 (5): 453–455. doi: 10.1016/0732-8893 (92)90088-b.

8. Kramarev S. A., Evtushenko V. V. Karbapenemy v klinicheskoi praktike. Aktual'naya Infektologiya. 2019; 7 (2): 57–62. (in Russian)

9. Identification of the pathogens of dangerous bacterial infections (plague, anthrax, cholera, tularemia, brucellosis, glanders, melioidoz) to antibacterial medicines. Method. the Decree. MU 4.2.2495-09. Moscow: 2009. (in Russian)

10. Klinicheskie rekomendatsii «Opredelenie chuvstvitel'nosti mikroorganizmov k antimikrobnym preparatam». 2018. (in Russian)

11. Vodopyanov A. S., Vodopyanov S. O., Oleynikov I. P., Mishan'kin B. N., Kruglikov V. D., Arkhangelskaya I. V., Zubkova D. A., Yezhova M. I. INDEL- и VNTR-typing Vibrio cholerae strains, isolated in 2013 from the environment objects in the Russian Federation. Zdorov'e Naseleniya i Sreda Obitaniya. 2015, 5 (266): 41–44. (in Russian)

12. Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30 (15): 2114–2120. doi: 10.1093/bioinformatics/btu170.

13. Bankevich A., Nurk S., Antipov D. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19 (5): 455–77. doi: 10.1089/cmb.2012.0021.

14. Kritskii A. A., Cheldyshova N. B., Zadnova S. P., Plekhanov N. A., Smirnova N. I. A Method for simultaneous detection of Vibrio cholerae strains and drug resistance genes in their genome by means of real-time PCR. Biotechnology. 2018, 34 (2): 70–72. (in Russian)

15. Alcock B. P., Raphenya A. R., Lau T. T. Y., Tsang K. K., Bouchard M., Edalatmand A., Huynh W., Nguyen A. V., Cheng A. A. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020 Jan 8; 48 (D1): D517–D525. doi: 10.1093/nar/gkz935. PMID: 31665441; PMCID: PMC7145624.

16. Grzhibovskiy A. M. Confidence intervals for proportions. Ekologiya Cheloveka. 2008; 5: 57–60 (in Russian)

17. Garg P., Chakraborty S., Basu I., Datta S., Rajendran K., Bhattacharya T., Yamasaki S., Bhattacharya S. K., Takeda Y., Nair G. B., Ramamurthy T. Expanding multiple antibiotic risistance among clinical strains of Vibrio cholerae isolated from 1992-7 in Calcutta, India. Epidemiol. Infect. 2000; 124 (3): 393–399. doi: 10.1017/s0950268899003957.

18. Dudina N. A., Ryzhko I. V., Lomov Yu. M., Tsuraeva R. I., Shut'ko A. G. Aktivnost' antibakterial'nykh preparatov razlichnykh grupp in vitro i in vivo v otnoshenii shtammov kholernogo vibriona el'tor, vydelennykh v g. Kazani v 2001g. Uspekhi Sovremennogo Estestvoznaniya. 2003; 6: 48–49. (in Russian)

19. Ryzhko I. V., Dudina N. A., Lomov Yu. M., Shutko A. G., Tsuraeva R. I., Anisimov B. I. Activity of 22 Antibacterials against O1 and O139 serogroup Vibrio cholerae strains isolated from humans within 1927–2005 in various regions of the world. Antibiot Khimioter = Antibiotics and Chemotherapy. 2005; 50 (8–9): 38–42. (in Russian)

20. Mashe T., Domman D., Tarupiwa A., Manangazira P., Phiri I., Masunda K., Chonzi P., Njamkepo E., Ramudzulu M., Mtapuri-Zinyowera S., Smith A. M., Weill F. Highly resistant cholera outbreak strain in Zimbabwe. N Engl J Med. 2020; 383 (7): 687–689. doi: 10.1056/NEJMc2004773.

21. Irenge L. M., Ambroise J., Mitangala P. N., Bearzatto B., Kabangwa R K.S, Duran J. F., Gala J. L. Genomic analysis of pathogenic isolates of Vibrio cholerae from eastern Democratic Republic of the Congo (2014–2017). PLoS Negl Trop Dis. 2020; 14 (4): e0007642. doi: 10.1371/journal.pntd.0007642.

22. Li F., Du P., Li B., Ke Ch., Chen A., Chen J., Zhou H., Li J., Jr J. G. M., Kan B., Wang D. Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China. Appl Environ Microbiol. 2014; 80 (16): 4987–92. doi: 10.1128/AEM.01021-14.

23. Dutta D., Chowdhury G., Pazhani G. P., Guin S., Dutta S., Ghosh S., Rajendran K., Nandy R. K., Mukhopadhyay A. K., Bhattacharya M. K., Mitra U., TakedaY., Nair G. B., Ramamurthy Th. Vibrio cholerae Non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg Infect Dis. 2013; 19 (3): 464–467. doi: 10.3201/eid1903.121156.

24. Luo Y., Wang H., Liang J., Qian H., Ye J, Chen L., Yang X., Chen Z., Wang F., Octavia S., Payne M., Song X., Jiang J., Jin D., Lan R. Population structure and multidrug resistance of non-O1/non-O139 Vibrio cholerae in fresh-water rivers in Zhejiang, China. Microb Ecol. 2021. doi: 10.1007/s00248-020-01645-z.

25. Valáriková J., Korcová J., Ziburová J., Rosinský J., Čížová A., Bieliková S., Sojka M., Farkaš P. Potential pathogenicity and antibiotic resistance of aquatic Vibrio isolates from freshwater in Slovakia. Folia Microbiol (Praha). 2020; 65 (3): 545–555. doi: 10.1007/s12223-019-00760-w.

26. Sharif N., Nobel N., Sakib N., Liza S., Khan S. T., Billah B., Parvez A. K., Haque A., Talukder A. A., Dey S. K. Molecular and epidemiologic analysis of diarrheal pathogens in children with acute gastroenteritis in bangladesh during 2014-2019. Pediatr Infect Dis J. 2020; 39 (7): 580–585. doi: 10.1097/INF.0000000000002637.

27. Shah M. R., Nur A. H., Alam М, Sadique A., Sultana M., Hoq M. M., Sack R. B., Colwell R. R. Vibrio cholera O1 with reduced susceptibility to ciprofloxacin and azithromycin isolated from a Rural Coastal Area of Bangladesh. Front Microbiol. 2017; 8: 252. doi: 10.3389/fmicb.2017.00252.

28. Gladkikh A. S., Feranchuk S. I., Ponomareva A. S., Bochalgin N. O., Mironova L. V. Antibiotic resistance in Vibrio cholerae El Tor strains isolated during cholera complications in Siberia and the Far East of Russia. Infection, Genetics and Evolution. 2020; 78; 104096. doi: 10.1016/j.meegid.2019.104096.

29. Ulyashova M. M., Presnova G. V., Pobolelova YuI, Filippova A. A., Egorov A. M., Rubtsova M. Y.u. Skrining bakterial'nykh genov, otvetstvennykh za ustoichivost' k beta-laktamnym antibiotikam, s ispol'zovaniem mikrochipov s fermentativnoidetektsiei. Vestnik Moskovskogo universiteta. Ser. 2. Khimiya. 2016; 57 (4): 245–252. (in Russian)

30. Sarkar A., Pazhani G. P., Chowdhury G., Ghosh A., Ramamurthy T. Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica Serovar Senftenberg. Front Microbiol. 2015; 6: 969. doi: 10.3389/fmicb.2015.00969.

31. Hammerl J. A., Jäckel C., Bortolaia V., Schwartz K., Bier N., Hendriksen R. S., Guerra B., Strauch E. Carbapenemase VCC-1-producing Vibrio cholerae in coastal waters of Germany. Emerg Infect Dis. 2017; 23 (10): 1735–1737. doi: 10.3201/eid2310.161625.

32. Mangat C. S., Boyd D., Janecko N., Martz S., Desruisseau A., Carpenter M., Reid-Smith R. J., Mulvey M. R. Characterization of VCC-1, a Novel Ambler Class A Carbapenemase from Vibrio cholerae Isolated from Imported Retail Shrimp Sold in Canada. Antimicrob Agents Chemother. 2016; 60 (3): 1819–1825. doi: 10.1128/AAC.00502-16

33. Aberkane S., Compain F., Barraud O., Ouédraogo A. S., Bouzinbi N., Vittecoq M., Jean-Pierre H., Decré D., Godreuil S. Non-O1/Non-O139 Vibrio cholerae Avian Isolate from France Cocarrying the bla (VIM-1) and bla (VIM-4) Genes. Antimicrob Agents Chemother. 2015; 59 (10): 6594–6. doi: 10.1128/AAC.00400-15.

34. Verma J., Bag S., Saha B., Kumar P., Ghosh T. S., Dayal M., Senapati T., Mehra S., Dey P., Desigamani A., Kumar D., Rana P., Kumar B., Maiti T. K., Sharma N. C., Bhadra R. K., Mutreja A., Nair G. B., Ramamurthy T., Das B. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc Natl Acad Sci USA. 2019; 116 (13): 6226–6231. doi: 10.1073/pnas.1900141116.

35. Lloyd N. A., Nazaret S., Barkay T. Genome-facilitated discovery of RND efflux pump-mediated resistance to cephalosporins in Vibrio spp. isolated from the mummichog fish gut. J. Glob Antimicrob Resist. 2019; 19: 294–300. doi: 10.1016/j.jgar.2019.05.006.

36. Siriphap A., Leekitcharoenphon P., Kaas R. S., Theethakaew C., Aarestrup F. M., Sutheinkul O. et al. Characterization and genetic variation of Vibrio cholerae isolated from clinical and environmental sources in Thailand. PLoS ONE. 2017; 12 (1): e0169324. doi: 10.1371/journal.pone.0169324.


Review

For citations:


Selyanskaya NA, Vodopyanov SO, Vodopyanov AS, Egiazaryan LA, Kruglikov VD. Resistance Analysis of Vibrio сholerae Isolated in Russia to Quinolones and Beta-Lactams. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2025;70(5-6):4-10. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-5-6-4-10. EDN: GMILDB

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)