Methodology of Screening New Antibiotics: Present Status and Prospects
Abstract
Keywords
References
1. Shallcross L.J., Davies S.C. The World Health Assembly resolution on antimicrobial resistance. J Antimicrob Chemother 2014; 69: 11: 2883-2885.
2. Monnet D.L. Raising awareness about prudent use of antibiotics: a necessity for the European Union. Enferm Infecc Microbiol Clin 2010; 28: Suppl: 4: 1-3.
3. Livermore D.M. Fourteen years in resistance. Int J Antimicrob Agents 2012; 39: 4: 283-294.
4. Magiorakos A.P., Srinivasan A., Carey R.B. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 3: 268-281.
5. Ruiz-Camps I., Cuenca-Estrella M. Antifungals for systemic use. Enferm Infecc Microbiol Clin 2009; 27: 6: 353-362.
6. Awakawa T. The International Conference of Natural Product Biosynthesis (ICNPB, 8th US-Japan seminar on the Biosynthesis of Natural Products). J Antibiot (Tokyo) 2012; 65: 11: 587-590.
7. Zhang Q., Li S., Chen Y. et al. New diketopiperazine derivatives from a deep-sea-derived Nocardiopsis alba SCSIO 03039. J Antibiot (Tokyo) 2013; 66: 1: 31-36.
8. Орлова Т.И., Булгакова В.Г., Полин А.Н. Вторичные метаболиты микроорганизмов - потенциальный резерв фармацевтических препаратов. Антибиотики и химиотер 2014; 3-4; 38-44.
9. Тренин A.C., Дудник Ю.В. Твердофазная система РНК-зависимой ДНК-полимеразы в поиске антибиотиков - потенциальных ингибиторов ВИЧ. Антибиотики и химиотер 2005; 50: 10-11: 4- 12
10. Тренин A.C. Микробные метаболиты - ингибиторы биосинтеза стеролов, их химическое разнообразие и особенности механизма действия. Биоорган хим 2013; 39: 6: 633-657
11. Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005; 58: 1: 1-26.
12. Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 2012; 65: 8: 385-395.
13. Demain A.L., Sanchez S. Microbial drug discovery: 80 years of progress. J. Antibiot (Tokyo) 2009; 62: 1: 5-16.
14. Freire-Moran L., Aronsson B., Manz C. et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria. Time to react is now. Drug Resist. Updat 2011; 14: 2: 118-124.
15. Clardy J., Fischbach M.A., Currie C.R. The natural history of antibiotics. Curr Biol 2009; 19: 11: 437-441.
16. Coates A.R., Hu Y. Novel approaches to developing new antibiotics for bacterial infections. Br J Pharmacol 2007; 152: 8: 1147-1154.
17. Aminov R.I. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134: 1-7.
18. Brötz-Oesterhelt H., Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol 2010; 5: 10: 1553-1579.
19. Егоров H.C. Основы учения об антибиотиках. 6-е изд. 2004. М.: Изд. МГУ; Наука, 528.
20. Koehn F.E. High impact technologies for natural products screening. Prog Drug Res 2008; 65: 177-210.
21. Molinari G. Natural products in drug discovery: present status and perspectives. Adv Exp Med Biol 2009; 655: 13-27.
22. Donadio S., Maffioli S., Monciardini P. et al. Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot (Tokyo) 2010; 63: 8: 423-430.
23. Genilloud O., González I., Salazar O. et al. Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 2011; 38: 3: 375-389.
24. Leeds J.A., Schmitt E.K., Krastel P. Recent developments in antibacterial drug discovery: microbe-derived natural products-from collection to the clinic. Expert Opin Investig Drugs 2006; 15: 3: 211-226.
25. Li J.W., Vederas J.C. Drug discovery and natural products: end of an era or an endless frontier? Science 2009; 325: 5937: 161-165.
26. Somanadhan B., Kotturi S.R., Leong C.Y. et al. Isolation and synthesis of falcitidin, a novel myxobacterial-derived acyltetrapeptide with activity against the malaria target falcipain-2. J Antibiot (Tokyo) 2013; 66: 5: 259-264.
27. Singh S.B., Young K. New antibiotic structures from fermentations. Expert Opin Ther Pat 2010; 20: 10: 1359-1371.
28. Sunazuka T., Hirose T., Omura S. Efficient total synthesis of novel bioactive microbial metabolites. Acc Chem Res 2008; 41: 2: 302-314.
29. Сазыкин Ю.О., Бибикова М.В., Иванов В.П. и др. Технология скрининга вторичных микробных метаболитов: к эволюции методологии. Антибиотики и химиотер 2002; 47: 10: 25-31
30. Феофилова Е.П., Алехин А.И., Гончаров Н.Г. и др. Фундаментальные основы микологии и создание лекарственных препаратов из мицелиальных грибов. М.: Национальная академия микологии: 2013; 152
31. Yamazaki Y., Someno T., Igarashi M. et al. Androprostamines A and B, the new anti-prostate cancer agents produced by Streptomyces sp. MK932-CF8. J Antibiot (Tokyo) 2015; 68: 4: 279-285.
32. Singh S.B., Pelaez F. Biodiversity, chemical diversity and drug discovery. Prog Drug Res 2008; 65: 141: 143-174.
33. Zanella F., Lorens J.B., Link W. High content screening: seeing is believing. Trends Biotechnol 2010; 28: 5: 237-245.
34. Berrue F., Withers S.T., Haltli B. et al. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites. Mar Drugs 2011; 9: 3: 369-381.
35. Blondelle S.E., Lohner K. Optimization and high-throughput screening of antimicrobial peptides. Curr Pharm Des 2010; 16: 28: 3204-3211.
36. Alksne L.E., Dunman P.M. Target-based antimicrobial drug discovery. Methods Mol Biol 2008; 431: 271-283.
37. Тренин A.C. Микробные модели в поиске ингибиторов биосинтеза стеролов. Антибиотики и химиотер 2013; 58: 7-8: 3-14
38. Rahman H., Austin B., Mitchell W.J. et al. Novel anti-infective compounds from marine bacteria. Mar Drugs 2010; 8: 3: 498-518.
39. Tiwari K., Gupta R.K. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 2012 Jun; 32: 2: 108-132.
40. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004; 68: 4: 669-685.
41. Hu Y., Shamaei-Tousi A., Liu Y., Coates A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS One 2010; 5: 7: P.e11818.
42. Gillespie D.E., Brady S.F., Bettermann A.D. et al. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 2002; 68: 9: 4301-4306.
43. Brady S.F., Simmons L., Kim J.H., Schmidt E.W. Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 2009; 26: 11: 1488-1503.
44. Hirota-Takahata Y., Kozuma S., Kuraya N. et al. Pedopeptins, novel inhibitors of LPS: Taxonomy of producing organism, fermentation, isolation, physicochemical properties and structural elucidation. J Antibiot (Tokyo) 2014; 67: 3: 243-251.
45. Raina S., De Vizio D., Odell M. et al. Microbial quorum sensing: a tool or a target for antimicrobial therapy?. Biotechnol Appl Biochem 2009; 54: 2: 65-84.
46. Sanchez S., Demain A.L. Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 2008; 1: 4: 283-319.
47. Amano S.I., Sakurai T., Endo K. et al. A cryptic antibiotic triggered by monensin. J Antibiot (Tokyo) 2011; 64: 10: 703.
48. Булгакова В.Г., Виноградова К.A., Орлова Т.И. и др. Действие антибиотиков как сигнальных молекул. Антибиотики и химиотер 2014; 59: 1-2: 36-43.
49. Challis G.L., Hopwood D.A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 2003; 100: Suppl 2: 14555-14561.
50. Rigali S., Titgemeyer F., Barends S. et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 2008; 9: 7: 670-675.
51. Sänchez S., Chávez A., Forero A. et al. Carbon source regulation of antibiotic production. J Antibiot (Tokyo) 2010; 63: 8: 442-459.
52. Стоянова Л.Г., Левина H.В. Регуляция синтеза бактериоцина рекомбинантного штамма Lactococcus lactis subsp. lactis F-116 компонентным составом среды. Микробиология. 2006; 75: 3: 286-291.
53. Ruiz B., Chávez A., Forero A. et al. Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 2010; 36: 2: 146-167.
54. Duetz W.A., Witholt B. Effectiveness of orbital shaking for the aeration of suspended bacterial cultures in square-deepwell microtiter plates. Biochem Eng J 2001; 7: 113-115.
55. Dieting U., Trauthwein H., Zimmermann H. High-throughput screening in the climatic chamber. Elements Degussa Sci News 2005; 11: 14-18.
56. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard 2nd edn CLSI document M27-A2 Clinical and Laboratory Standards Institute: Wayne, PA, 2002.
57. Кубанова A.A., Степанова Ж.В., Гуськова Т.А. и др. Методические указания по изучению противогрибковой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Часть первая / Под ред. А.Н. Миронова. М.: Гриф и К, 2012; 944: 578-586.
58. Тренин A.C. Микробная тест-система для поиска ингибиторов биосинтеза стеролов. Антибиотики и химиотер 2013; 58: 3-4: 3-9
59. Тренин A.C. Микробная модель Halobacterium salinarum для поиска ингибиторов биосинтеза стеролов. Антибиотики и химиотер 2013; 58: 5-6: 3-10
60. Тренин A.C., Двигун E.A., Бычкова O.П., Лавренов C.H. Микробная модель Halobacterium salinarum в отборе синтетических аналогов антибиотика турбомицина А, обладающих противоопухолевым действием. Антибиотики и химиотер 2013; 58: 9-10: 3-7
61. Bode H.B., Bethe B., Hųfs R., Zeeck A. Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 2002; 3: 7: 619-627.
62. Hopwood D.A. Cracking the polyketide code. PLoS Biol. 2004. V.2. N.2. E35. P.0166-0169. - Режим доступа: 10.1371/journal.pbio.0020035 - PMID:14966534.
63. Kotowska M. Application of molecular biology for the discovery of biosynthetic genes of polyketide and peptide antibiotics produced by actinomycetes. Postepy Biochem 2005; 51: 3: 345-352.
64. Егоров A.M. Антибиотики: прошлое, настоящее и будущее препаратов для лечения инфекционных болезней. Ведом науч центра экспер средств мед прим 2007; 3: 1-6.
65. Medema M.H., Kottmann R., Yilmaz P. et al. Minimum information about a biosynthetic gene cluster. Nat Chem Biol 2015 Aug; 11: 9: 625- 631.
66. Olano C., Méndez C., Salas J.A. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. Microb Biotechnol 2011; 4: 2: 144-164.
67. Nishida H., Beppu T., Ueda K. Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae. Genomics. 2011. Nov; 98; 5: 370-375.
68. Ma S.M., Li J.W, Choi J.W. et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 2009: 326: 5952: 589-592.
69. Caffrey P., Aparicio J.F., Malpartida F., Zotchev S.B. Biosynthetic engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents. Curr Top Med Chem 2008; 8: 8: 639-653.
70. Schirmer A., Gadkari R., Reeves C.D. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 2005; 71: 8: 4840-4849.
71. Hopwood D.A. How do antibiotic-producing bacteria ensure their selfresistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 2007; 63: 4: 937-940.
72. Méndez C., Künzel E., Lipata F. et al. Oviedomycin, an unusual angucy-clinone encoded by genes of the oleandomycin-producer Streptomyces antibioticus ATCC11891. J Nat Prod 2002; 65; 5: 779-782.
73. Shawky R.M., Puk O., Wietzorrek A. et al. The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator. J Mol Microbiol Biotechnol 2007; 13: 1-3: 76-88.
74. Gupta S.K., Padmanabhan B.R., Diene S.M. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58: 1: 212-220.
75. Preobrazhenskaya M.N., Olsufyeva E.N., Tevyashova A.N. et al. Synthesis and study of the antifungal activity of new mono- and di-substituted derivatives of a genetically engineered polyene antibiotic 28, 29-didehydro nystatin A1 (S44HP). J Antibiot (Tokyo) 2010; 63: 2: 55-64.
76. Macone A.B., Caruso B.K., Leahy R.G. et al. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother 2014; 58: 2: 1127-1135.
77. Chen X., Wei P., Fan L. et al. Generation of high-yield rapamycin-pro-ducing strains through protoplasts-related techniques. Appl Microbiol Biotechnol 2009; 83: 3: 507-512.
78. Тренин A.C., Федорова Г.Б., Лайко A.В., Дудник Ю.В. Увеличение продукции эремомицина в результате регенерации и УФ-облучения протопластов Amycolatopsis orientalis subsp. eremomycini. Антибиотики и химиотер 2001; 46: 3: 6-11.
79. Nakashima T., Iwatsuki M., Ochiai J. et al. Mangromicins A and B: structure and antitrypanosomal activity of two new cyclopentadecane compounds from Lechevalieria aerocolonigenes K10-0216. J Antibiot (Tokyo) 2014; 67: 3: 253-260.
80. Testa C.A., Johnson L.J. A whole-cell phenotypic screening platform for identifying methylerythritol phosphate pathway-selective inhibitors as novel antibacterial agents. Antimicrob Agents Chemother 2012 Sep; 56: 9: 4906-4913.
81. Kahan B.D. Forty years of publication of transplantation proceedings- the second decade: the cyclosporine revolution. Transplant Proc 2009; 41: 5: 1423-1437.
82. Iwasaki S., Omura S. Search for protein farnesyltransferase inhibitors of microbial origin: our strategy and results as well as the results obtained by other groups. J Antibiot (Tokyo) 2007; 60: 1: 1-12.
83. Hiramatsu K., Igarashi M., Morimoto Y. et al. Curing bacteria of antibiotic resistance: reverse antibiotics, a novel class of antibiotics in nature. Int J Antimicrob Agents 2012; 39: 6: 478-485.
84. Bugg T.D., Braddick D., Dowson C.G., Roper D.I. Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 2011; 29: 4: 167-173.
85. Бибикова М.В., Грамматикова Н.Э., Катлинский A.В. и др. Влияние природных гиполипидемических соединений на формирование биоплёнок штаммами рода Pseudomonas. Антибиотики и химиотер 2009; 54: 1-2: 10-13.
86. Тренин A.C., Терехова Л.П., Толстых И.В. и др. Отбор микробных вторичных метаболитов - ингибиторов биосинтеза холестерина с помощью культуры клеток гепатобластомы G2. Антибиотики и химиотер 2003; 48: 1: 3-8
87. Arai Y., Iinuma H., Ikeda Y. et al. Migracins A and B, new inhibitors of cancer cell migration, produced by Streptomyces sp. J Antibiot (Tokyo) 2013; 66: 4: 225-230.
88. Moy T.I., Conery A.L., Larkins-Ford J. et al. High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 2009; 4: 7: 527-533.
89. Zhang B., Watts K.M., Hodge D. et al. A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry 2011; 50: 17: 3570-3577.
90. Soppa J. From genomes to function: Haloarchaea as model organisms. Microbiology 2006; 152: 3: 585-590.
91. Терехова Л.П., Галатенко O.A., Тренин A.C. и др. Выделение и изучение антибиотика ИНА-1132 (хлоротрицина), образуемого штаммом Streptomyces baarnensis. Антибиотики и химиотер 2008; 53: 7-8: 3-7
92. Шашков A.C., Цветков Д.E., Лапчинская O.A. и др. Строение, спектры ЯМР 1Н и 13Сибиологическая активность антибиотика ИНА-1278, родственного ирумамицину и продуцируемого экспериментальным штаммом Streptomyces sp. № 1278. Известия РАН. Серия химическая. 2011; 60: 11: 2365-2370
93. Тренин A.C., Кац Н.Ю., Двигун E.A., Бычкова O.M., Краснопольская Л.М. Базидиальные грибы Kuehneromyces mutabilis, Flammulina velutipes и Lentinus edodes, как возможные продуценты ингибиторов биосинтеза стеролов. Успехи мед микол 2014; 12: 353-354
94. Cтепанова Е.В., Штиль A.A., Лавренов C.H. и др. Соли трис (1-алкилиндол-3-ил) метилия - новый класс противоопухолевых соединений. Известия Академии наук. Серия химическая. 2010; 12: 1-9
95. Yao X., Li C., Zhang J., Lu C.D. г-Glutamyl spermine synthetase PauA2 as a potential target of antibiotic development against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 56: 10: 5309-5314
96. Huband M.D., Bradford P.A., Otterson L.G. et al. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against gram-positive, fastidious gram-negative, and atypical bacteria. Antimicrob Agents Chemother 2015; 59: 1: 467-474
97. Therien A.G., Huber J.L., Wilson K.E. et al. Broadening the spectrum of /З-lactam antibiotics through inhibition of signal peptidase type I. Antimicrob Agents Chemother 2012; 56: 9: 4662-4670.
98. Cox G., Koteva K., Wright G.D. An unusual class of anthracyclines potentiate gram-positive antibiotics in intrinsically resistant gram-negative bacteria. J Antimicrob Chemother 2014; 69: 7: 1844-1855.
99. Cushnie T.P., Cushnie B., Lamb A.J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44: 5: 377-386.
100. Otto M.P., Martin E., Badiou C. et al. Effects of subinhibitory concentrations of antibiotics on virulence factor expression by community-acquired methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2013; 68: 7: 1524-1532.
101. Diep B.A., Afasizheva A., Le H.N., et al. Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. J Infect Dis 2013; 208:1: 75-82.
102. Khodaverdian V., Pesho M., Truitt B. et al. Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2013; 57: 8: 3645-3652.
103. Maiolo E.M., Furustrand Tafin U., Borens O., Trampuz A. Activities of fluconazole, caspofungin, anidulafungin, and amphotericin B on plank-tonic and biofilm Candida species determined by microcalorimetry. Antimicrob Agents Chemother 2014; 58: 5: 2709-2717.
104. Arita-Morioka K., Yamanaka K., Mizunoe Y. et al. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother 2015; 59: 1: 633-641.
105. Baugh S., Phillips C.R., Ekanayaka A.S. et al. Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother 2014; 69: 3: 673-681.
106. Marcone G.L., Carrano L., Marinelli F., Beltrametti F. Protoplast preparation and reversion to the normal filamentous growth in antibiotic-producing uncommon actinomycetes. J Antibiot (Tokyo) 2010; 63: 2: 83-88.
107. Walkty A., Adam H., Baxter M. et al. In vitro activity of plazomicin against 5,015 gram-negative and gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011-2012. Antimicrob Agents Chemother 2014; 58: 5: 2554-2563.
108. Huang E., Yousef A.E. Paenibacterin, a novel broad-spectrum lipopep-tide antibiotic, neutralises endotoxins and promotes survival in a murine model of Pseudomonas aeruginosa-induced sepsis. Int J Antimicrob Agents 2014; 44: 1. P.74-77.
109. Qian C.D., Wu X.C., Teng Y. et al. Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother 2012; 56: 3: 1458-1465.
110. Hernandez V., Crépin T., Palencia A. et al. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrob Agents Chemother 2013; 57: 3: 1394-1403.
Review
For citations:
Trenin A.S. Methodology of Screening New Antibiotics: Present Status and Prospects. Antibiot Khimioter = Antibiotics and Chemotherapy. 2015;60(7-8):34-46. (In Russ.)