Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Production of Lipolytic Enzymes by Xylotrophic Basidiomycetes

Abstract

Twenty strains of basidiomycetes were screened for lipolytic activity. Two strains - Trametes versicolor 1 and Hericium erinaceus 0912 - were able to produce lipolytic enzymes during solid medium and submerged cultivation. Oleic acid and yeast extract were selected as the best carbon and nitrogen sources for Trametes versicolor 1, oleic acid, soybean meal and corn steep liquor - for Hericium erinaceus 0912. Hericium erinaceus 0912 accumulated the maximum amount of lipolytic enzymes in the culture medium after 120 h, Trametes versicolor 1 - after 36 h. The culture medium proteins were precipitated by ammonium sulfate and dialyzed, after which the enzyme preparations of lipases were isolated by gel filtration. The weight of the preparation of lipases from H.erinaceus 0912 was 5.5 times greater than the weight of the preparation of lipases from T.versicolor 1, however the activity of the lipases from T.versicolor 1(792.6 mU/mg protein) was three times higher than that of the lipases from H.erinaceus 0912 (204.55 mU/mg protein).

About the Authors

N. R. Almyasheva
Gause Institute of New Antibiotics; Gubkin Russian State University of Oil and Gas
Russian Federation


A. V. Golyshkin
Gause Institute of New Antibiotics; Gubkin Russian State University of Oil and Gas
Russian Federation


M. Y. Ziangirova
Gause Institute of New Antibiotics
Russian Federation


D. A. Petrova
Gubkin Russian State University of Oil and Gas
Russian Federation


L. M. Krasnopolskaya
Gause Institute of New Antibiotics
Russian Federation


References

1. Gandhi N.N. Applicationsoflipase. Journalofthe American Oil Chemists' Society 1997; 74: 6: 621-634.

2. Шифрин О. С. Ферментные препараты в лечении внешнесекреторной недостаточности поджелудочной железы. Гастроэнтерология. Приложение к журналу Consilium Medicum 2007; 1: 14-16.

3. Безбородов A. M., Загустина H. A. Липазы в реакциях катализа в органическом синтезе (обзор). Прикладная биохимия и микробиология 2014; 50: 4: 347-347.

4. Pandey A. et al. The realm of microbial lipases in biotechnology. Biotechnology and applied biochemistry 1999; 29: 2: 119-131.

5. Uyama H., Wada S., Fukui T., Kobayashi S. Lipase-catalyzed synthesis of polyesters from anhydride derivatives involving dehydration. Biochemical engineering journal 2003; 16: 2: 145-152.

6. Samoylova Y. V. et al. Application of the immobilized bacterial recombinant lipase from Geobacillus stearothermophilus. Catalysis in Industry 2016; 8: 2: 187-193.

7. Li Z. et al. Lipase-catalyzed one-step and regioselective synthesis of clindamycin palmitate. Organic Process Research & Development 2013; 17: 9: 1179-1182.

8. Li C. et al. Biocatalytic promiscuity: the first lipase-catalysed asymmetric aldol reaction. Green Chemistry 2008; 10: 6: 616-618.

9. Fermor T. R., Grant W. D. Degradation of fungal and actinomycete mycelia by Agaricus bisporus. Microbiology 1985; 131: 7: 1729-1734.

10. Singh M.K., Singh J., Kumar M., Thakur I.S. Novel lipase from basidiomycetes Schizophyllum commune ISTL04, produced by solid state fermentation of Leucaena leucocephala seeds. Journal of Molecular Catalysis B: Enzymatic 2014; 110: 92-99.

11. Zorn H., Breithaupt D. E., Takenberg M., Schwack W., Berger R. G. Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase. Enzyme and microbialtech-nology 2003; 32: 5: 623-628.

12. Соболева П. Ю., Краснополъская Л. М., Федорова Г. Б., Катруха Г. С. Антибиотические свойства штаммов базидиального гриба Lentinusedodes (Berk.) Sing. Антибиотики и химиотер 2006; 51: 7: 3-8

13. Al'myasheva N.R., Kopitsyn D.S., Vinokurov V.A., Novikov A.A. Methanolysis of Sunflower Oil Using Immobilized Fungal Cells as Biocatalyst. Chemistry and Technology of Fuels and Oils 2015; 50: 6: 449-452.

14. Fabiszewska A.U., Stolarzewicz I.A., Zamojska W.M., Bialecka-Florjanczyk E. Carbon source impact on Yarrowia lipolytica KKP 379 lipase production. Applied Biochemistry Microbiol 2014; 50: 4: 404-410.

15. Nair C.S., Bone D.H. Production of lipase of Aspergillus foetidus in a batch stirred reactor. Biotechnology Letters 1987; 9: 8: 601-604.

16. Krupodorova T., Ivanova T., Barshteyn V. Screening of extracellular enzymatic activity of macrofungi. The Journal of Microbiology, Biotechnology and Food Sciences 2014; 3: 4: 315.

17. Goud M.J.P., Suryam A., Lakshmipathi V., Singara Charya M. A. Extracellular hydrolytic enzyme profiles of certain South Indian basid-iomycetes. African Journal of Biotechnology 2009; 8: 3: 354-360.

18. Hädrich-Meyer S., Berger R.G. Localization of lipolytic and esterolytic activities of Tyromyces sambuceus, a 4-decanolide-producing basid-iomycete. Applied Microbiology and Biotechnology 1994; 41: 2: 210-214.

19. Linke D., Zorn H., Gerken B., Parlar H., Berger R.G. Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus). Lipids 2005; 40: 3: 323-327.

20. Lin E.S., Wang C.C., Sung S.C. Cultivating conditions influence lipase production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Enzyme and Microbial Technology 2006; 39: 1: 98-102.

21. Makhsumkhanov A.A., YakubovI.T., Davranov K.Conditions for cultivation of the fungus Penicillium melinii UzLM-4 and its biosynthesis of lipases. Applied Biochemistry and Microbiology 2003; 39: 1: 40-43.

22. Ohnishi K., Yoshida Y., Sekiguchi J. Lipase production of Aspergillus oryzae. J Fermentation and Bioengineering 1994; 77: 5: 490-495.


Review

For citations:


Almyasheva N.R., Golyshkin A.V., Ziangirova M.Y., Petrova D.A., Krasnopolskaya L.M. Production of Lipolytic Enzymes by Xylotrophic Basidiomycetes. Antibiot Khimioter = Antibiotics and Chemotherapy. 2018;63(1-2):8-13. (In Russ.)

Views: 424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)