Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Molecular Mechanisms of Ceftaroline Susceptibility Reduction in Methicillin-Resistant Staphylococcus aureus

Abstract

Ceftaroline is a unique cephalosporin with activity against methicillin resistant Staphylococcus aureus (MRSA). It was approved for clinical use in the USA, Europe and Russian Federation since 2010 for the treatment of the skin and soft tissue infection and community-acquired pneumoniae. In the present study there was used molecular typing of 24 isolates of MRSA with reduced susceptibility to ceftaroline. For 8 isolates belonging to different genetic lines (ST8, ST239 and ST228) and requiring MICs there were determined antibiotic concentrations preventing formation of resistant mutants (mutant prevention concentration) and the ranges of the mutant selection window (MSW). The last majority of the isolates with reduced susceptibility to ceftaroline (MIC of 2 mcg/ml) belonged to the clonal line ST228. The whole genome sequencing of two isolates of ST228 showed that they belonged to the epidemic South Germany genetic line and were characterized by the presence of mutations in PBP2a (N146K) and PBP2 (C197Y) responsible for reduced susceptibility. The highest rates of MPC (32 mcg/ml) and MSW (2-16 mcg/ml) were observed in the clinical isolates belonging to the genetic line ST8. The isolates of ST239 and ST228 had the selection window within 2-4 mcg/ml. No dependence of the MIC and MPC/MSW levels was detected.

About the Authors

V. V. Gostev
Scientific Research Institute of Children's Infections
Russian Federation


O. S. Kalinogorskaya
Scientific Research Institute of Children's Infections
Russian Federation


O. A. Dmitrenko
Research Centre of Epidemiology and Microbiology named After Honoured Academician N. F. Gamalei
Russian Federation


I. A. Tsvetkova
Scientific Research Institute of Children's Infections
Russian Federation


S. V. Sidorenko
Scientific Research Institute of Children's Infections; North-Western State Medical University named after I. I. Mechnikov
Russian Federation


References

1. Laudano J.B. Ceftaroline fosamil: a new broad-spectrum cephalosporin. J Antimicrob Chemother 2011; 66: Suppl 3: iii11-18.

2. Gostev V.V., Kalinogorskaya O.S., Popenko L.N., Chernenkaya T.V., Naumenko Z.S., Voroshilova T.M., Zakharova Y.A., Khokhlova O.E., Kruglov A.N., Ershova M.G. et al. Antibiotic Resistance of MRSA in the Russian Federation. Antibiot Khimioter 2015, 60: 3-9.

3. Lahiri S.D., Alm R.A. Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: involvement of other PBPs. J Antimicrob Chemother 2016.

4. Greninger A.L., Chatterjee S.S., Chan L.C., Hamilton S.M., Chambers H.F., Chiu C.Y. Whole-genome sequencing of methicillin-resistant Staphylococcus aureus resistant to fifth-generation cephalosporins reveals potential non-mecA mechanisms of resistance. PLoS One 2016, 11: e0149541.

5. Banerjee R., Gretes M., Harlem C., Basuino L., Chambers H.F. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level beta-lactam resistance contains mutations in three genes. Antimicrob Agents Chemother 2010; 54: 4900-4902.

6. Mendes R.E, Tsakris A., Sader H.S., Jones R.N., Biek D., McGhee P., Appelbaum P.C., Kosowska-Shick K. Characterization of methicillin-resis-tant Staphylococcus aureus displaying increased MICs of ceftaroline. J Antimicrob Chemother 2012.

7. Kelley W.L., Jousselin A., Barras C., Lelong E., Renzoni A. Missense mutations in PBP2A affecting ceftaroline susceptibility detected in epidemic hospital-acquired methicillin-resistant Staphylococcus aureus clonotypes ST228 and ST247 in Western Switzerland archived since 1998. Antimicrob Agents Chemother 2015; 59: 1922-1930.

8. Vogel V., Falquet L., Calderon-Copete S.P., Basset P., Blanc D.S. Short term evolution of a highly transmissible methicillin-resistant Staphylococcus aureus clone (ST228) in a tertiary care hospital. PLoS One 2012; 7: e38969.

9. Senn L., Clerc O, Zanetti G., Basset P., Prod'hom G., Gordon N.C., Sheppard A.E., Crook D. W., James R., Thorpe H.A. et al. The stealthy superbug: the role of asymptomatic enteric carriage in maintaining a longterm hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. MBio 2016; 7: e02039-02015.

10. Saravolatz S.N., Martin H., Pawlak J., Johnson L.B., Saravolatz L.D. Ceftaroline-heteroresistant Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58: 3133-3136.

11. INTERNATIONAL STANDARD ISO 20776-1. Clinical laboratory testing and in vitro diagnostic test systems - Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices - Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.

12. Dong Y., Zhao X., Domagala J., Drlica K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob Agents Chemother 1999; 43: 1756-1758.

13. Blondeau J.M. New concepts in antimicrobial susceptibility testing: the mutant prevention concentration and mutant selection window approach. Vet Dermatol 2009; 20: 383-396.

14. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 2009; 53: 4961-4967.

15. Brunel A.S., Bouzinbi N., Corne P., Banuls A.L., Shahbazkia H.R. DNAGear - a free software for spa type identification in Staphylococcus aureus. BMC Res Notes 2012; 5: 642.

16. Bartels M.D., Petersen A., Worning P., Nielsen J.B., Larner-Svensson H., Johansen H.K., Andersen L.P., Jarlov J.O., Boye K., Larsen A.R., Westh H. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2014; 52: 4305-4308.

17. Nurk S., Bankevich A., Antipov D., Gurevich A.A., Korobeynikov A., Lapidus A., Prjibelski A.D., Pyshkin A., Sirotkin A., Sirotkin Y. et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 2013; 20: 714-737.

18. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114-2120.

19. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67: 2640-2644.

20. Joensen K.G., Scheutz F., Lund O., Hasman H., Kaas R.S., Nielsen E.M., Aarestrup F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014; 52:1501-1510.

21. Kaas R.S., Leekitcharoenphon P., Aarestrup F.M., Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 2014; 9: e104984.

22. Otero L.H., Rojas-Altuve A., Llarrull L.I., Carrasco-Lopez C., Kumarasiri M., Lastochkin E., Fishovitz J., Dawley M., Hesek D., Lee M. et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A 2013; 110: 16808-16813.

23. Van Wart S.A., Ambrose P.G., Rubino C.M., Khariton T., Riccobene T.A., Friedland H.D., Critchley I.A., Bhavnani S.M. Pharmacokinetic-pharmacodynamic target attainment analyses to evaluate in vitro susceptibility test interpretive criteria for ceftaroline against Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 2014; 58: 885-891.

24. MacGowan A.P., Noel A.R., Tomaselli S., Bowker K.E. Pharmacodynamics of ceftaroline against Staphylococcus aureus studied in an in vitro pharmacokinetic model of infection. Antimicrob Agents Chemother 2013; 57: 2451-2456.


Review

For citations:


Gostev V.V., Kalinogorskaya O.S., Dmitrenko O.A., Tsvetkova I.A., Sidorenko S.V. Molecular Mechanisms of Ceftaroline Susceptibility Reduction in Methicillin-Resistant Staphylococcus aureus. Antibiot Khimioter = Antibiotics and Chemotherapy. 2016;61(9-10):17-21. (In Russ.)

Views: 366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)