Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Fluorescence Polarization Immunoassay for Express Control of Antibiotic Levels: Design and Characteristics for Chloramphenicol, as an Example

Abstract

Characteristics of the fluorescence polarization immunoassay (FPIA) as a mean for express control of antibiotic levels in various specimens and its advantages vs. other analytical tests are described. The developmental stages of the analytical procedure and its parameters are considered for chlorampnenicol as an example. The analysis is based on competitive interaction of anti-chloramphenicol antibodies with the chloramphenicol-fluorophore conjugate and the potential free chloramphenicol in the specimen. The experimental results of the comparison of the chloramphenicol FPIA with the use of two conjugates differing in the length of the bridge length between the antibiotic functional groups and fluorophore (fluorescein) are presented. The requirements to the choice of the antibody and conjugate concentrations providing highly sensitive detection are characterized. The detection limit of chloramphenicol in the FPIA was 10 ng/ml and the determination of the concentrations ranged from 20 ng/ml to 10 mcg/ml. The time of the assay was 10 min.

About the Authors

S. A. Eremin
M. V. Lomonosov Moscow State University
Russian Federation


O. Yu. Khan
M. V. Lomonosov Moscow State University
Russian Federation


V. V. Pisarev
Scientific-Production Center «Probiotek»
Russian Federation


E. A. Zvereva
A. N. Bakh Institute of Biochemistry, Federal Research Centre «Fundamentals of Biotechnology» Russian Academy of Sciences
Russian Federation


A. V. Zherdev
A. N. Bakh Institute of Biochemistry, Federal Research Centre «Fundamentals of Biotechnology» Russian Academy of Sciences
Russian Federation


B. B. Dzantiev
A. N. Bakh Institute of Biochemistry, Federal Research Centre «Fundamentals of Biotechnology» Russian Academy of Sciences
Russian Federation


References

1. Blasco C., Torres C.M., Pico Y. Progress in analysis of residual antibacterials in food. Trends Anal Chem 2007; 26: 9: 895-913.

2. Durso L. M., Cook K. L. Impacts of antibiotic use in agriculture: what are the benefits and risks? Cur Opin Microbiol 2014; 19: 37-44.

3. Beyene T.Veterinary drug residues in food-animal products: its risk factors and potential effects on public health. J Veterinar Sci Technol 2016, 7: 1: 7.

4. Finley R.L., Collignon P., Larsson D.G.J., McEwen S.A., Li X.Z., Gaze W.H. et al. The scourge of antibiotic resistance: the important role of the environment. Clin Infect Diseases 2013; 57: 5: 704-710.

5. Robert C., Gillard N., Brasseur P. Y., Pierret G., Ralet N, Dubois M., Delahaut P. Rapid multi-residue and multi-class qualitative screening for veterinary drugs in foods of animal origin by UHPLC-MS/MS. Food Addit Contam Part A 2013; 30: 3: 443-457.

6. Mottier P., Parisod V., Gremaud E., Guy P.A., Stadler R.H. Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 2003; 994: 1-2: 75-84.

7. Barreto F., Ribeiro C., Hoff R. B., Costa T. D. Determination and confirmation of chloramphenicol in honey, fish and prawns by liquid chromatography -tandem mass spectrometry with minimum sample preparation: validation according to 2002/657/EC Directive. Food Addit Contam Part A 2012; 29: 4: 550-558.

8. Tao X., Zhou S., Yuan X., Li H. Determination of chloramphenicol in milk by ten chemiluminescent immunoassays: influence of assay format applied. Anal Methods 2016; 8: 22: 4445-4451.

9. Xu F., Ren K., Yang Y., Guo J., Ma G., Liu Y. et al. Immunoassay of chemical contaminants in milk: A review. J Integr Agric 2015; 14: 11: 2282-2295.

10. Dzantiev B.B., Byzova N.A., Urusov A.E., Zherdev A.V. Immunochromatographic methods in food analysis. Trends Anal Chem 2014; 55: 81-93.

11. Smith D.S., Eremin S.A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 2008; 391: 1499-1507.

12. Еремин С.А. Поляризационный флуоресцентный иммуноанализ физиологически активных веществ. В кн.: Биохимические методы анализа. / Под ред. Б.Б. Дзантиева; М.: Наука; 2010. Стр. 368-389

13. Gaudin V., Cadieu N, Maris P. Inter-laboratory studies for the evaluation of ELISA kits for the detection of chloramphenicol residues in milk and muscle. Food Agric Immunol 2003; 15: 143.

14. Murtazina N.R., Medjanceva Je.P., Pisarev V.V., Eremin S.A. Immunohimicheskoe opredelenie sul'fametazina v rechnoj vode i lekarstvennyh preparatah. Himiko-farm zhurnal 2005; 39: 8: 93-97. [in Russian]

15. Nesterenko I.S., Nokel' M.A., Eremin S.A. Immunohimicheskie metody opredelenija sul'fanilamidnyh preparatov. Zhurn analit him 2009; 64: 5: 453-462. [in Russian]

16. Shanin I.A., Shajmardanov A.R., Nguen Ti Diu Thaj, Eremin S.A. Opredelenie antibiotika ftorhinolonovogo rjada levofloksacina v moche metodom poljarizacionnogo fluorescentnogo immunoanaliza. Zhurn analit him 2015; 6: 70: 617-623. [in Russian]

17. Gavrilov V.B., Eremin S.A., Egorov A.M. Spavnitel'nyj analiz immunohimicheskogo oppedelenija gentamicina po poljapizacii i tusheniju fu-opescencii. Antibiotiki i himioter 1992; 37: 9: 36-39.

18. Shanin I.A., Zvereva E.A., Zherdev A.V., Eremin S.A., Dzantiev B.B. Development of fluorescence polarization and enzyme-linked immunosorbent assays for danofloxacin detection in milk. Int J Chem Sci 2016; 14: 12: 283-298.

19. Mi T., Wang Z., Eremin S., Shen J., Zhang S. Simultaneous determination of multiple (fluoro)quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay. J Agric Food Chem 2013; 61: 39: 9347-9355.

20. Rodbard D. Statistical estimation of the minimal detectable concentration («sensitivity») for radioligand assays. Anal Biochem 1978; 90: 1: 1-12


Review

For citations:


Eremin S.A., Khan O.Yu., Pisarev V.V., Zvereva E.A., Zherdev A.V., Dzantiev B.B. Fluorescence Polarization Immunoassay for Express Control of Antibiotic Levels: Design and Characteristics for Chloramphenicol, as an Example. Antibiot Khimioter = Antibiotics and Chemotherapy. 2016;61(9-10):22-27. (In Russ.)

Views: 543


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)