Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Microbial Sensor for Determination of Amoxicillin Activity

https://doi.org/10.37489/0235-2990-2020-65-1-2-3-9

Abstract

A sensor based on the electrodynamic microwave resonator has been developed to determine the antibacterial activity of antibiotics using amoxicillin as an example. Microbial cells immobilized on the polystyrene film surface were used as a sensitive element of the sensor. The optimal conditions for the immobilization of Escherichia coli Xl-1 microbial cells on the surface of a thin polystyrene film modified in high-frequency argon discharge plasma and deposited on a lithium niobate plate were determined. The effect of amoxicillin on immobilized microbial cells was studied using the developed sensor. It has been established that the increase in con- centration of amoxicillin from 5 to 50 μg/ml leads to a significant change in the reflection coefficient S11 at the resonance frequency from the lithium niobate plate in the range of -12.6 dB — -15.1 dB. It has been shown that the developed sensor allows determining the antibacterial activity of drugs in the studied concentration range with an analysis time of 15 min.

About the Authors

O. I. Guliy
Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS; Saratov State Vavilov Agrarian University
Russian Federation
Saratov


B. D. Zaitsev
Kotelnikov Institute of Radio Engineering and Electronics, RAS, Saratov Branch
Russian Federation
Saratov


A. V. Smirnov
Kotelnikov Institute of Radio Engineering and Electronics, RAS
Russian Federation
Moscow


O. A. Karavaeva
Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS
Russian Federation
Saratov


A. К. М. Alsowaidi
Saratov State University
Russian Federation
Saratov


O. S. Larionova
Saratov State Vavilov Agrarian University
Russian Federation
Saratov


I. A. Borodina
Kotelnikov Institute of Radio Engineering and Electronics, RAS, Saratov Branch
Russian Federation
Saratov


References

1. De Miguel-Ramos M., Díaz-Dura ´ n B., Escolano J., Barba M., Mirea T., Olivares J. et al. Gravimetric biosensor based on a 1.3 GHz AlN shearmode solidly mounted resonator. Sensors and Actuators B 2017; 239: 1282–1288. doi: 10.1016/j.snb.2016.09.079

2. Di Pietrantonioa F., Benettia M., Cannatàa D., Veronab E., Girasolec M., Foscac M. et al. A Shear horizontal surface acoustic wave biosensor for a rapid andspecific detection of d-serine. Sensors and Actuators 2016; 226: 1–6. doi: 10.1016/j.snb.2015.11.099

3. Shukshina E.I., Farafonova O.V., Shanin I.A., Grazhulene S.S., Eremin S.A., Ermolaeva T.N. Affinnye vzaimodejstviya na poverkhnosti p'ezoelektricheskogo sensora, modifitsirovannogo uglerodnymi nanotrubkami, pri opredelenii ftorkhinolonov. Sorbtsionnye i khromatograficheskie protsessy 2018; 18 (3): 394–403. [in Russian] https://doi.org/10.17308/sorpchrom.2018.18/544.

4. Farafonova O.V., Potanina A.Jyu., Tarasova N.V., Ermolaeva T.N. Sintez metodom fotopolimerizatsii i primenenie tonkikh plenok polimerov s molekulyarnymi otpechatkami dlya molekulyarnogo raspoznavaniya tsefalosporinov. Sorbtsionnye i khromatograficheskie protsessy 2018; 18 (4): 495–504. [in Russian]

5. Don E., Farafonova Î., Pokhil S., Barykina D., Nikiforova M., Shulga D. et al. Use of Piezoelectric Immunosensors for Detection of Interferon-Gamma Interaction with Specific Antibodies in the Presence of Released-Active Forms of Antibodies to Interferon-Gamma. Sensors (Basel) 2016; 16 (1): 96. doi:10.3390/s16010096

6. Farafonova O.V., Shukshina E.I., Grazhulene S.S., Ermolaeva T.N. Poverkhnostnye ansambli na osnove uglerodnykh nanotrubok v p'ezoelektricheskom immunosensore dlya vysokochuvstvitel'nogo opredeleniya raktopamina. Sorbtsionnye i khromatograficheskie protsessy 2017; 17 (4): 548–556. [in Russian]

7. Gulij O.I., Zajtsev B.D., Smirnov A.V., Karavaeva O.A., Borodina I.A. Biosensor dlya detektsii bakteriofagov na osnove sverkhvysokochastotnogo rezonatora. Prikladnaya biokhimiya i mikrobiologiya 2017; 53 (6): 642–650. [in Russian] doi: 10.7868/S0555109917060083

8. Tsui O.K.C. Polymer thin films. World Scientific. Ño-edited by O. K. C. Tsui and T. P. Russell, World Scientific, Singapore; 2008; 267–294.

9. Otero T.F. Polymer sensors and actuators. Eds. Y. Osada, D. E. De Rossi. Berlib; Springer; 2000; 295–324.

10. Sheremet'ev S.V., Shtejnberg E.M. Ispol'zovanie funktsional'nykh polimerov v meditsine. Kazan': SibAK; 2012. [in Russian]

11. Chu P.K., Chen J.Y., Wang L.P., Huang N. Plasma-surface modification of biomaterials. Mat Sci Eng R 2002; 36 (5): 143–206.

12. Jacobs T., Morent R., De Geyter N., Dubruel P., Leys Ñ. Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction Plasma. Chem Plasma Process 2012; 32 (5): 1039–1073.

13. European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption, 2017.

14. Antibiotic Resistance Protocols: Second Edition, Gillespie SH, McHugh TD (eds.), Methods in Molecular Biology, vol. 642, Springer Science+Business Media, LLC 2010.

15. Gulij O.I., Zajtsev B.D., Semenov A.S., Larionova O.S., Karavaeva O.A., Borodina I.A. Otsenka vozdejstviya amoksitsillina na mikrobnye kletki metodom elektroakusticheskogo analiza. Biofizika 2018; 63 (3): 496–502. [in Russian]


Review

For citations:


Guliy O.I., Zaitsev B.D., Smirnov A.V., Karavaeva O.A., Alsowaidi A.К., Larionova O.S., Borodina I.A. Microbial Sensor for Determination of Amoxicillin Activity. Antibiot Khimioter = Antibiotics and Chemotherapy. 2020;65(1-2):3-9. (In Russ.) https://doi.org/10.37489/0235-2990-2020-65-1-2-3-9

Views: 659


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)