Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

The Effects of Shock Vancomycin Concentrations on the Formation of Heteroresistance in Staphylococcus aureus

https://doi.org/10.37489/0235-2990-2020-65-9-10-3-7

Abstract

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.

About the Authors

V. V. Gostev
Pediatric Research and Clinical Center for Infectious Diseases of Federal Medical-Biological Agency; North-Western State Medical University named after I.I.Mechnikov
Russian Federation

St. Petersburg



Yu. V. Sopova
St. Petersburg branch of Vavilov Institute of General Genetics; St. Petersburg University
Russian Federation

St. Petersburg



O. S. Kalinogorskaya
Pediatric Research and Clinical Center for Infectious Diseases of Federal Medical-Biological Agency
Russian Federation

St. Petersburg



M. E. Velizhanina
St. Petersburg University
Russian Federation

St. Petersburg



I. V. Lazareva
Pediatric Research and Clinical Center for Infectious Diseases of Federal Medical-Biological Agency
Russian Federation

St. Petersburg



P. S. Starkova
Pediatric Research and Clinical Center for Infectious Diseases of Federal Medical-Biological Agency
Russian Federation

St. Petersburg



S. V. Sidorenko
Pediatric Research and Clinical Center for Infectious Diseases of Federal Medical-Biological Agency; North-Western State Medical University named after I.I.MechnikovNorth-Western State Medical University named after I.I.Mechnikov
Russian Federation

St. Petersburg



References

1. Brauner A., Fridman O., Gefen O., Balaban N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microb 2016; 14 (5): 320–330. doi: 10.1038/nrmicro.2016.34

2. Andersson D.I., Nicoloff H., Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microb 2019; 17 (8): 479–496. doi: 10.1038/s41579-019-0218-1

3. Levin-Reisman I., Ronin I., Gefen O., Braniss I., Shoresh N., Balaban N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017; 355 (6327): 826–830. doi: 10.1126/science.aaj2191

4. Band V.I., Weiss D.S. Heteroresistance: A cause of unexplained antibiotic treatment failure? PLoS Pathog 2019; 15 (6): e1007726.

5. Shariati A., Dadashi M., Moghadam M.T., van Belkum A., Yaslianifard S., Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Scic Rep 2020; 10 (1): 12689.

6. Hiramatsu K., Kayayama Y., Matsuo M., Aiba Y., Saito M., Hishinuma T., Iwamoto A. Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist 2014; 2 (4): 213–224. doi: 10.1016/j.jgar.2014.04.006

7. Fridman O., Goldberg A., Ronin I., Shoresh N., Balaban N.Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 2014; 513 (7518): 418–421. doi: 10.1038/nature13469

8. Van den Bergh B., Michiels J.E., Wenseleers T., Windels E.M., Boer P.V., Kestemont D., De Meester L., Verstrepen K.J., Verstraeten N., Fauvart M. et al. Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat Microbiol 2016; 1: 16020. doi: 10.1038/nmicrobiol.2016.20

9. Pfeltz R.F., Schmidt J.L., Wilkinson B.J. A microdilution plating method for population analysis of antibiotic-resistant staphylococci. Microbial Drug Resist 2001; 7 (3): 289–295. doi: 10.1089/10766290152652846

10. Okonechnikov K., Golosova O., Fursov M., Team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012; 28 (8): 1166–1167. doi: 10.1093/bioinformatics/bts091

11. Laureti L., Matic I., Gutierrez A. Bacterial Responses and Genome Instability Induced by Subinhibitory Concentrations of Antibiotics. Antibiotics 2013; 2 (1): 100–114. doi: 10.3390/antibiotics2010100

12. Giuliano C., Haase K.K., Hall R. Use of vancomycin pharmacokineticpharmacodynamic properties in the treatment of MRSA infections. Expert Rev Anti-Infect Ther 2010; 8 (1): 95–106. doi: 10.1586/eri.09.123.

13. Stevens D.L. The role of vancomycin in the treatment paradigm. Clin Infect Dis: an official publication of the Infectious Diseases Society of America 2006; 42 Suppl 1: S51–57. doi: 10.1086/491714

14. Ji Q., Chen P.J., Qin G., Deng X., Hao Z., Wawrzak Z., Yeo W.S., Quang J.W., Cho H., Luo G.Z. et al. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nat Commun 2016; 7: 11000. doi: 10.1038/ncomms11000

15. Yin Y., Chen H., Li S., Gao H., Sun S., Li H., Wang R., Jin L., Liu Y., Wang H. Daptomycin resistance in methicillin-resistant Staphylococcus aureus is conferred by IS256 insertion in the promoter of mprF along with mutations in mprF and walK. Int J Antimicrob Agents 2019; 54 (6): 673–680. doi: 10.1016/j.ijantimicag.2019.08.021

16. Watanabe Y., Cui L., Katayama Y., Kozue K., Hiramatsu K. Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J Clin Microbiol 2011; 49 (7): 2680–2684/ doi: 10.1128/JCM.02144-10

17. Howden B.P., McEvoy C.R., Allen D.L., Chua K., Gao W., Harrison P.F., Bell J., Coombs G., Bennett-Wood V., Porter J.L. et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 2011; 7 (11): e1002359. doi: 10.1371/journal.ppat.1002359

18. Howden B.P., Smith D.J., Mansell A., Johnson P.D., Ward P.B., Stinear T.P., Davies J.K. Different bacterial gene expression patterns and attenuated host immune responses are associated with the evolution of low-level vancomycin resistance during persistent methicillin-resistant Staphylococcus aureus bacteraemia. BMC Microbiol 2008; 8: 39. doi: 10.1186/1471-2180-8-39

19. Cui L., Tominaga E., Neoh H.M., Hiramatsu K. Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50 (3): 1079–1082. doi: 10.1128/AAC.50.3.1079-1082.2006

20. Camargo I.L., Neoh H.M., Cui L., Hiramatsu K. Serial daptomycin selection generates daptomycin-nonsusceptible Staphylococcus aureus strains with a heterogeneous vancomycin-intermediate phenotype. Antimicrob Agents Chemother 2008; 52 (12): 4289-4299. doi: 10.1128/AAC.00417-08


Review

For citations:


Gostev V.V., Sopova Yu.V., Kalinogorskaya O.S., Velizhanina M.E., Lazareva I.V., Starkova P.S., Sidorenko S.V. The Effects of Shock Vancomycin Concentrations on the Formation of Heteroresistance in Staphylococcus aureus. Antibiot Khimioter = Antibiotics and Chemotherapy. 2020;65(9-10):3-7. (In Russ.) https://doi.org/10.37489/0235-2990-2020-65-9-10-3-7

Views: 902


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)