Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Can Channel-Forming Antibiotics In Complex with Carriers Provide Enhanced Muscle Activity?

https://doi.org/10.37489/0235-2990-2020-65-11-12-3-10

Abstract

The presented review and experimental work provides the data regarding the selective permeability of lipid and cell membranes for ions and organic compounds under the influence of channel-forming polyene compounds with a known molecule structure. It has been shown that the polyene antibiotic levorin А2 with an aromatic structure affects a number of physicochemical parameters of lipid membranes. It was established that the permeability of lipid and cellular membranes for monovalent cations, as well as for monosugar and other neutral molecules increases under the influence of a levorin of А2. The biological activity of levorin А2 and the rate of delivery of molecules to the membranes depend on the surface tension and substrate environment of the membranes. It has been shown that in combination with levorin, dimethyl sulfoxide, and citral, the surface tension of the aqueous solutions surrounding the membrane decreases by half. Comparative data on levorin А2 effects on lipid membranes and muscle cell membranes are presented. It is assumed that levorin А2, being a channel-forming compound, can induce the formation of additional permeability channels in the membranes of muscle cells and, with intense muscle activity, enhance the transfer of cation and energy-dependent substrates through the membranes.

About the Authors

T. P. Taghi-Zada
Azerbaijan State Academy of Physical Education and Sport, Department of Medical and Biological Sciences
Azerbaijan
Baku


Kh. M. Kasumov
Institute of Botany of Azerbaijan National Academy of Sciences
Azerbaijan
Baku


References

1. Cho M.R., Thatte H.S., Silvia M.T. et al. Transmembrane calcium influx induced by alternating current (ac) electric fields. FASEB J 1999; 13: 677–683.

2. Hille B. In book: Ion Channels of Excitable Membranes, 3rd Edn., Sinauer Associates, Sunderland, MA. 2001.

3. MacKinnon R. Potassium channels. FEBS Lett 2003; 555: 62–65.

4. Nikolskiy N.N. V kn.: Obshiye mexanizmi kletochnix reaksiy na povrejdayushie vozdeystviya.Nauch. trudi Instituta Tsitologii AN SSSR. L.: 1977; 17: 23–25. [in Russian]

5. Duncan J.M., Hicks A.L., MacDonald J.R. et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 1998; 84: 2138–2142.

6. Khassaf M., Child R.B., BmcArdle A. et al. Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J Appl Physiol 2001; 90: 1031–1035.

7. Kasumov Kh. M.. Struktura I membrannaya funksiya poliyenovix makrolidnix antibiotikov. Nauka, 2009. [in Russian]

8. Samedova A.A. Tagi-zade T.P., Kasumov Kh.M. Dependence of ion channel properties formed by polyene antibiotics molecules on the lactone ring structure. Russian Journal of Bioorganic Chemistry 2018; 44 (3): 337–345.

9. Shvinka N. Cannel-formation in muscle fibre membrane compared ton artifical bilayer membranes. Proc Latv Acad Sci 2001; 56: 57–60.

10. Kasumov Kh.M. Otkritie odinochnix poliyenivix kanalov I izuchenie ix svoystv v membranax. Lambert Academic Publishing 2020; 1–541. [in Russian]

11. Cybulska B., Bolard J., Seksek O. et al. Identification of the structural elements of amphotericin B and other polyene macrolide antibiotics of the heptaene group influencing the ionic selectivity of the permeability pathways formed in the red cell membrane. Biochim Biophys Acta 1995; 1240: 167–178.

12. Borowski E. Novel approaches in the rational design of antifungal agents of low toxicity. Farmaco 2000; 55: 206–208.

13. Filipova A.I., Shenin Yu.D. Physical and chemical properties of levorin components. Antibiotics [in Russian], 1974; 19 (1): 32–35.

14. Fillipova A.I., Lashkov G.I., Kozel S.P., Shenin Yu.D. Spektrofotometricheskoe issledovanie fotochimicheskoy izomerizasii poliyenovogo antibiotika levorina A2. Antibiotiki I Medisinskaya Biotexnologiya 1987; 32: 749–754. [in Russian]

15. Shvinka N., Caffner G. Cation conductance and efflux induced by polyene antibiotics in the membrane of skeletal muscle fiber. Biophys J 1994; 67: 143–152.

16. Kates M. Techniques of lipidology. In R.H. Burdon and P.H. van Knippenberg (ed.), Laboratory techniques in biochemistry and molecular biology. Elsevier. Amsterdam. The Netherlands 1986; 3: 100–110, 163–164, 251–253.

17. Yu Z., Quinn P. Dimethyl sulphoxide: a review of its applications in cell biology. Bioscience Reports 1994; 14: 259–281.

18. Zenin V.V. Pronisayemost modifisirovannix amphoterisinom B bisloynix lipidnix membrane dlya neelektroli tov I ionov. Avtoref. dis. kand. boil. Nauk. L.: 1979. [in Russian]

19. Lipatnikov B.E., Kazakov K.M. Fizicheskaya i kolloidnaya ximiya. Moskva. Izd. Visshaya shkola. 1981; 60–64. [in Russian]

20. Shvinka N.E., Kafner G. Vliyaniye amfoterisina B I nistatina na transport kationov v membrane mishechnogo volokna. Biologicheskiye Membrane 1989; 6: 1216–1221. [in Russian]

21. Shvinka N.E., Kafner G. Issledovaniye kinetiki vzaimodeystviya amfoterisina B s membranoy mishechnogo volokna. Biologicheskiye Membrane 1991; 8: 1292–1303. [in Russian]

22. Tsiganov V. Levorin i ego klinicheskoe primeneniye. Trudi LNIIA. Vi p. V. Sankt-Peterburg: 1970; 1–159. [in Russian]

23. Brill G.E., Zaxarova E. Vliyaniye dimetilsulfoksida na izmeneniya limfomikrosirkulyasii, vizvannie stafilokokkovim toksinom. Eksper i Kiln. Farmakol 1998; 61: 54–56. [in Russian]

24. Maria Clerya Alvino Leite, Andre´ Parente de Brito Bezerra, Janiere Pereira de Sousa et al. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evidence-Based Complementary and Alternative Medicine 2014; 1–9.

25. Grela E., Zdybicka-Barabas A., Pawlikowska-Pawlega B. et al. Modes of the antibiotic activity of amphotericin B against Candida albicans. Sci Rep 2019; 9 (1): 17029.

26. Goryayev M., Pliva I. Metodi issledovaniya efirnix masel. Izd. AN Kazaxskoy SSR. Alma-Ata: 1962; 427–434. [in Russian]

27. Lide D. (ed) Handbook of Chemistry and Physics, CRC Press, Baton Rou., 1990.

28. Yu Z., Quinn P. The modulation of membrane structure and stability by dimethyl sulphoxide (Review). Molecular Membrane Biology. 1998; 15: 59–68.

29. Yu Z., Quinn P. Solvation on effects of dimethyl sulphoxide on the structure of phospholipid bilayers. Biophysical Chem 1998; 70: 35–39.

30. Shvinka N., Caffner G. Nystatin — mycoheptin — and levorin-induced conductance in the membrane of frog skeletal muscle fibres. Eur Biophys J 1995; 24: 23–30.

31. Ramos H., Attias de Murciano A., Cohen B. et al. The polyene antibiotic amphotericin B acts as a Ca++ ionophore in sterol-containing liposomes. Biochim Biophys Acta 1989; 982: 303–306.

32. Hartsel S.C, Benz S.K., Ayenew W. et al. Na+, K+ and Cl- selectivity of the permeability pathways induced through sterol-containing membrane vesicles by amphotericin B and other polyene antibiotics. Eur Biophys J 1994; 23: 125–132.

33. Aparicio J.F., Caffrey P., Gil J.A. et al. Polyene antibiotic biosynthesis gene clusters. Appl Microbiol Biotechnol 2003; 61: 179–188.

34. Coutinho A., Prieto M. Self-association of the polyene antibiotic nystatin in dipalmitoylphosphatidylcholine vesicles: a time-resolved fluorescence study. Biophysical Journal 1995; 69: 2541–2557.

35. Mazerski J., Borowski E. Molecular dynamics of amphotericin B. II. Dimer in water. Biophysical Chem 1996; 57: 205–217.

36. Gaboriau F., Cheron M., Petit C. et al. Heat-induced superaggregation of amphotericin B reduces its in vitro toxicity: a new way to improve its therapeutic index. Antimicrob Agents Chemother 1997; 2345–2351.


Review

For citations:


Taghi-Zada T.P., Kasumov Kh.M. Can Channel-Forming Antibiotics In Complex with Carriers Provide Enhanced Muscle Activity? Antibiot Khimioter = Antibiotics and Chemotherapy. 2020;65(11-12):3-10. (In Russ.) https://doi.org/10.37489/0235-2990-2020-65-11-12-3-10

Views: 583


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)