Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Rationale for a New Outpatient Drug Therapy Algorithm in COVID-19 Patients Based on the Principle of «Multi-hit» Approach

https://doi.org/10.37489/0235-2990-2021-66-3-4-49-61

Abstract

The aim of the work was to justify the algorithm of outpatient drug therapy in patients with COVID-19, based on the principle of «Multi-hit» Approach. The algorithm is based on the published results of clinical studies and observations, authors’ own practical experience in the use and management of more than 4 thousand patients diagnosed with COVID-19 of varying severity during the 2020 pandemic. The article substantiates a complex algorithm for the treatment of outpatients with COVID-19, which includes etiotropic, pathogenetic, and symptomatic components of therapy with different mechanisms of action. The described approach is the 1st stage (outpatient) of a complex algorithm for managing patients with COVID-19. It has been successfully implemented in the system of outpatient care for patients with novel coronavirus infections in several leading medical institutions in Russia. The authors believe that the developed algorithm for providing outpatient drug therapy for COVID-19, based on the principle of multiple exposure, may be useful in real clinical practice of managing patients with coronavirus infection.

About the Authors

K. A. Zykov
Pulmonology Research Institute; А. I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Health of the Russian Federation
Russian Federation

Kirill A. Zykov — D. Sc. in medicine, Professor of the Russian Academy of Sciences

32 11th Parkovaya Street, Moscow, 105077



E. A. Sinitsyn
Pulmonology Research Institute; А. I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Health of the Russian Federation
Russian Federation

Evgeny A. Sinitsyn — Chief Physician; Assistant of the Department of Faculty Therapy and Occupational Diseases

Moscow



A. V. Rvacheva
А. I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Health of the Russian Federation
Russian Federation

Anna V. Rvacheva — Ph. D. in medicine

Moscow



A. O. Bogatyreva
А. I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Health of the Russian Federation
Russian Federation

Anna O. Bogatyreva — Ph.D. in medicine

Moscow



A. A. Zykova
А. I. Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Health of the Russian Federation; JSC Medsi Group
Russian Federation

Alexandra A. Zykova — Head of the Center for Correction of Comorbid Conditions at Clinical Hospital No. 1 of JSC Medsi Group; Associate Professor at the Department of Faculty Therapy and Occupational Diseases

Moscow



T. V. Shapovalenko
JSC Medsi Group
Russian Federation

Tatyana V. Shapovalenko — D. Sc. in medicine, Professor

Moscow



References

1. Otchet o tekushei situacii po bor’be s koronavirusom. Kommunikacionnii centr Pravitel’stva Rossiiskoi Federacii. 21.04.2021https://стопкоронавирус.рф (in Russian) ]

2. Temporary guidelines for the prevention, diagnosis and treatment of new coronavirus infection (COVID-19) of the Ministry of Health of the Russian Federation, version 10 (08.02.2021). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/662/original/Временные_МР_COVID-19_%28v.10%29.pdf (in Russian).)

3. Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020 May; 27 (5): 1451–1454. doi: 10.1038/s41418-020-0530-3. Epub 2020 Mar 23. PMID: 32205856; PMCID: PMC7091918.

4. Suhail S., Zajac J., Fossum C., Lowater H., McCracken C., Severson N., Laatsch B., Narkiewicz-Jodko A., Johnson B., Liebau J., Bhattacharyya S., Hati S. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: a review. Protein J. 2020 Dec; 39 (6): 644–656. doi: 10.1007/s10930-020-09935-8. Epub 2020 Oct 26. PMID: 33106987; PMCID: PMC7587547.

5. Laforge M., Elbim C., Frère C., Hémadi M., Massaad C., Nuss P., Benoliel J.J., Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020 Sep; 20 (9): 515–516. doi: 10.1038/s41577-020-0407-1. Erratum in: Nat Rev Immunol. 2020 Aug 10;: PMID: 32728221; PMCID: PMC7388427.

6. Wang M., Wu T., Zuo Z., You Y., Yang X., Pan L., Hu Y., Luo X., Jiang L., Xia Z., Deng M. Evaluation of current medical approaches for COVID-19: a systematic review and meta-analysis. BMJ Support Palliat Care. 2021 Mar; 11 (1): 45–52. doi: 10.1136/bmjspcare-2020-002554. Epub 2020 Sep 21. PMID: 32958501.

7. Geleris J., Sun Y., Platt J., Zucker J., Baldwin M., Hripcsak G., Labella A., Manson D.K., Kubin C., Barr R.G., Sobieszczyk M.E., Schluger N.W. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020 Jun 18; 382 (25): 2411–2418. doi: 10.1056/NEJMoa2012410. Epub 2020 May 7. PMID: 32379955; PMCID: PMC7224609.

8. Boulware D.R., Pullen M.F., Bangdiwala A.S., Pastick K.A., Lofgren S.M., Okafor E.C., Skipper C.P., Nascene A.A., Nicol M.R., Abassi M., Engen N.W., Cheng M.P., LaBar D., Lother S.A., MacKenzie L.J., Drobot G., Marten N., Zarychanski R., Kelly L.E., Schwartz I.S., McDonald E.G., Rajasingham R., Lee T.C., Hullsiek K.H. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020 Aug 6; 383 (6): 517–525. doi: 10.1056/NEJMoa2016638. Epub 2020 Jun 3. PMID: 32492293; PMCID: PMC7289276.

9. Leneva I.A., Pshenichnaya N.Y., Bulgakova V.A. Umifenovir and coronavirus infections: a review of research results and clinical practice. Ter Arkh. 2020 Dec 26; 92 (11): 91–97. Russian. doi: 10.26442/00403660.2020.11.000713. PMID: 33720612. (in Russian).

10. Pandit A., Bhalani N., Bhushan B.L.S., Koradia P., Gargiya S., Bhomia V., Kansagra K. Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II, randomized, controlled, open-label study. Int J Infect Dis. 2021 Mar 10; 105: 516–521. doi: 10.1016/j.ijid.2021.03.015. Epub ahead of print. PMID: 33713817; PMCID: PMC7944859.

11. Li H., Xiong N., Li C., Gong Y., Liu L., Yang H., Tan X., Jiang N., Zong Q., Wang J., Lu Z., Yin X. Efficacy of ribavirin and interferon-α therapy for hospitalized patients with COVID-19: A multicenter, retrospective cohort study. Int J Infect Dis. 2021 Mar; 104: 641–648. doi: 10.1016/j.ijid.2021.01.055. Epub 2021 Jan 28. PMID: 33515771; PMCID: PMC7840408.

12. Min Ong C.W., Migliori G.B., Raviglione M., MacGregor-Skinner G., et al. Epidemic and pandemic viral infections: impact on tuberculosis and the lung. A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN) and members# of ESCMID Study Group for Mycobacterial Infections (ESGMYC). Eur Respir J. 2020; 56 (4): 2001727. doi.org/10.1183/13993003.01727-2020.

13. Ruzhentsova T.A., Chukhlyaev P.V., Khavkina D.A. et al. Efficacy and safety of favipiravir in a complex therapy of mild to moderate COVID-19. Infectious Diseases: News, Opinions, Training]. 2020; 9 (4): 26–38. doi: https://doi.org/10.33029/2305-3496-2020-9-4-26-38 (in Russian).

14. Çinarka H., GÜnlÜoĞlu G., ÇÖrtÜk M., Yurt S., Kiyik M., KoŞar A.F., Tanriverdİ E., Arslan M.A., Baydİlİ K.N., KoÇ A.S., Altin S., Çetİnkaya E. The сomparison of Lopinavir/Ritonavir сombination and Favipiravir in COVID-19 treatment. Turk J Med Sci. 2021 Mar 17. doi: 10.3906/sag-2012-189. Epub ahead of print. PMID: 33726482.

15. Solaymani-Dodaran M., Ghanei M., Bagheri M., Qazvini A., Vahedi E., Hassan Saadat S., Amin Setarehdan S., Ansarifar A., Biganeh H., Mohazzab A., Khalili D., Hosein Ghazale A., Reza Heidari M., Taheri A., Khoramdad M., Mahdi Asadi M., Nazemieh M., Varshochi M., Abbasian S., Bakhtiari A., Mosaed R., Hosseini-Shokouh S.J., Shahrokhi M., Yassin Z., Ali Zohal M., Qaraati M., Rastgoo N., Sami R., Javad Eslami M., Asghari A., Namazi M., Ziaie S., Jafari-Moghaddam R., Kalantari S., Memarian M., Khodadadi J., Hossein Afshari M., Momen-Heravi M., Behzadseresht N., Reza Mobayen A., Mozafari A., Movasaghi F., Haddadzadeh Shoushtari M., Moazen J. Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia. Int Immunopharmacol. 2021 Mar 11; 95: 107522. doi: 10.1016/j.intimp.2021.107522. Epub ahead of print. PMID: 33735712; PMCID: PMC7951885.

16. Deeva E.G., Rusinov V.L., Charushin V.N. New antiviral drug Triazavirin ® : from scrining to clinical trials. Devepopment and Registration of Drugs. 2014; 2: 144–151. (in Russian).

17. Artemiev G.A., Bondarev V.P., Borisevich S.V. etc. Triazavirin is a new generation antiviral drug: monograph. 2016. Yekaterinburg: Institute of Organic Synthesis. AND I. Postovsky Ural Branch of the Russian Academy of Sciences. (in Russian).

18. Karpenko I., Deev S., Kiselev O. et al. Antiviral properties, metabolism, and pharmacokinetics of a novel Azolo 1,2,4-Triazine derived inhibitor of influenza A and B virus replication. Antimicrob Agents Chemother. 2010; 54 (5): 2017–2022.

19. Sologub T.V., Tokin I.I, Midikari A.S, Tsvetkov V.V. A comparative efficacy and safety of using antiviral drugs in therapy of patients with influenza. Infectious Diseases. 2017; 15 (3): 40–47. doi: 10.20953/1729-9225-2017-3-40-47. (in Russian).

20. Sabitov A.U., Sorokin P.V., Dashutina C.Y. The Efficacy and Safety of Riamilovir in the Treatment of Patients with COVID-19. Antibiotiki I Khimioter. 2021; 66 (1–2): 33–37. doi: 10.24411/0235-2990-2021-66-1-2-33-37. (in Russian).

21. Wu X., Yu K., Wang Y., Xu W., Ma H., Hou Y., Li Y., Cai B., Zhu L., Zhang M., Hu X., Gao J., Wang Y., Qin H., Wang W., Zhao M., Wu X., Zhang Y., Li L., Li K., Du Z., Mol B.W.J., Yang B. Efficacy and safety of triazavirin therapy for coronavirus disease 2019: A pilot randomized controlled trial. engineering (Beijing). 2020 Oct; 6 (10): 1185–1191. doi: 10.1016/j.eng.2020.08.011. Epub 2020 Sep 8. PMID: 32923016; PMCID: PMC7476906.

22. Kasyanenko K.V., Kozlov K.V., Maltsev O.V. et al. Evaluation of the effectiveness of Riamilovir in the complex therapy of patients with COVID-19. Terapevticheskii Arkhiv (Ter. Arkh). 2021; 93 (3): 290–294. doi: 10.26442/00403660.2021.03.200719. (in Russian).

23. Chan S.W. Current and Future Direct-Acting Antivirals Against COVID-19. Front Microbiol. 2020 Nov 12; 11: 587944. doi: 10.3389/fmicb.2020.587944. PMID: 33262747; PMCID: PMC7688518.

24. Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19) V. 4 (27.03.2020) https://static-3.rosminzdrav.ru/system/attachments/attaches/000/049/877/original/COVID19_recomend_v4.pdf (in Russian).

25. Cavalcanti A.B., Zampieri F.G., Rosa R.G. et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med. 2020 Nov 19; 383 (21): 2041–2052. doi: 10.1056/NEJMoa2019014. Epub 2020 Jul 23. Erratum in: N Engl J Med. 2020 Nov 19;383(21):e119. PMID: 32706953; PMCID: PMC7397242.

26. Echeverría-Esnal D., Martin-Ontiyuelo C., Navarrete-Rouco M.E., De-Antonio Cuscó M., Ferrández O., Horcajada J.P., Grau S. Azithromycin in the treatment of COVID-19: a review. Expert Rev Anti Infect Ther. 2021 Feb; 19 (2): 147–163. doi: 10.1080/14787210.2020.1813024. Epub 2020 Oct 6. PMID: 32853038.

27. RECOVERY Collaborative Group. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, openlabel, platform trial. Lancet. 2021 Feb 13; 397 (10274): 605-612. doi: 10.1016/S0140-6736(21)00149-5. Epub 2021 Feb 2. PMID: 33545096; PMCID: PMC7884931.

28. Zimmermann P., Ziesenitz V.C., Curtis N., Ritz N. The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms. Front Immunol. 2018 Mar 13; 9: 302. doi: 10.3389/fimmu. 2018.00302. PMID: 29593707; PMCID: PMC5859047.

29. Fouka E., Lamprianidou E., Arvanitidis K., Filidou E., Kolios G., Miltiades P. et al. Low-dose clarithromycin therapy modulates Th17 response in non-cystic fibrosis bronchiectasis patients. Lung. 2014;192 (6): 849–855 doi:10.1007/s00408-014-9619-0.

30. Parackova Z., Bloomfield M., Klocperk A., Sediva A. Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 2021 Jan; 109 (1): 73–76. doi: 10.1002/JLB.4COVCRA0820-481RRR. Epub 2020 Dec 2. PMID: 33289169; PMCID: PMC7753339.

31. Zeng M., Li Z.Y., Ma J., Cao P.P., Wang H., Cui Y.H., Liu Z. Clarithromycin and dexamethasone show similar anti-inflammatory effects on distinct phenotypic chronic rhinosinusitis: an explant model study. BMC Immunol. 2015 Jun 6; 16: 37. doi: 10.1186/s12865-015-0096-x. PMID: 26047816; PMCID: PMC4456709.

32. Zykov K.A. Novye prakticheskie perspektivy primeneniya makrolidnykh antibiotikov pri khronicheskikh vospalitel'nykh zabolevaniyakh respiratornogo trakta. Prakticheskaya pul'monologiya. 2015; 3. URL: https://cyberleninka.ru/article/n/novye-prakticheskie-perspektivy-primeneniya-makrolidnyh-antibiotikov-pri-hronicheskih-vospalitelnyh-zabolevaniyah-respiratornogo (data obrashcheniya: 22.04.2021). (in Russian).

33. Tsaganos T., Raftogiannis M., Pratikaki M., Christodoulou S., Kotanidou A., Papadomichelakis E., Armaganidis A., Routsi C., Giamarellos-Bourboulis E.J. Clarithromycin Leads to Long-Term Survival and Cost Benefit in Ventilator-Associated Pneumonia and Sepsis. Antimicrob Agents Chemother. 2016 May 23; 60 (6): 3640–3646. doi: 10.1128/AAC.02974-15. PMID: 27044546; PMCID: PMC4879428.

34. Poddighe D., Aljofan M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antivir Chem Chemother. 2020 Jan-Dec; 28: 2040206620961712. doi: 10.1177/2040206620961712. PMID: 32972196; PMCID: PMC7522830.

35. Yamaya M., Shinya K., Hatachi Y., Kubo H., Asada M., Yasuda H., Nishimura H., Nagatomi R. Clarithromycin inhibits type a seasonal influenza virus infection in human airway epithelial cells. J Pharmacol Exp Ther. 2010 Apr; 333 (1): 81–90. doi: 10.1124/jpet.109.162149. Epub 2009 Dec 29. PMID: 20040578.

36. Lee C.W., Tai Y.L., Huang L.M., Chi H., Huang F.Y., Chiu N.C., Huang C.Y., Tu Y.H., Wang J.Y., Huang D.T. Efficacy of clarithromycin-naproxen-oseltamivir combination therapy versus oseltamivir alone in hospitalized pediatric influenza patients. J Microbiol Immunol Infect. 2020 Sep 12: S1684-1182 (20) 30215-2. doi: 10.1016/j.jmii.2020.08.017. Epub ahead of print. PMID: 32978076.

37. Park J.S., Chyun J.H., Kim Y.K., Line L.L., Chew B.P. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans, Nutr Metab (Lond). 2010; 7: 18. doi: 10.1186/1743-7075-7-18.

38. Wisniewska A., Subczynski W.K. Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochim Biophys Acta. 1998; 1368 (2): 235—246. ISSN 0005-2736. doi:10.1016/s0005-2736(97)00182-x.

39. Miyachi M., Matsuno T., Asano K., Mataga I. Anti-inflammatory effects of astaxanthin in the human gingival keratinocyte line NDUSD1, J Clin Biochem Nutr. 2015; 56 (3): 171–178. doi: 10.3164/jcbn.14-109.

40. Dhinaut J., Balourdet A., Teixeira M., Chogne M., Moret Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model, Sci Rep. 2017; 7: 12429. doi: 10.1038/s41598-017-12769-7.

41. Kishimoto Y., Tani M., Kondo H.U., Iizuka M. et al. Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages, Eur J Nutr. 2020; 49 (2): 119–126. doi: 10.1007/s00394-009-0056-4.

42. Cai X., Chen Y., Xiaona X., Yao D. et al. Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB. Am J Transl Res. 2019; 11: 1884–1894. PMID: 30972212.

43. Zhang Z.X., Xu X.C., Liu T., Yuan S. Mitochondrion-permeable antioxidants to treat ROS-burst-mediated acute diseases, Oxid Med Cell Longev. 2016; 6859523. doi: 10.1155/2016/6859523.

44. Talukdar J., Bhadra B., Dattaroy T., Nagle V., Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother. 2020 Dec; 132: 110886. doi: 10.1016/j.biopha.2020.110886. Epub 2020 Oct 16. PMID: 33113418; PMCID: PMC7566765.

45. Refaie M.M., Amin E.F., El-Tahawy N.F., Abdelrahman A.M. Possible protective effect of diacerein on doxorubicin-induced nephrotoxicity in rats. J Toxicol. 2016; 2016: 9507563. doi: 10.1155/2016/9507563. Epub 2016 Jan 20. PMID: 26904117; PMCID: PMC4745331.

46. Mohan G.C., Zhang H., Bao L., Many B., Chan L.S. Diacerein inhibits the pro-atherogenic & pro-inflammatory effects of IL-1 on human keratinocytes & endothelial cells. PLoS One. 2017 Mar 21; 12 (3): e0173981. doi: 10.1371/journal.pone.0173981. PMID: 28323859; PMCID: PMC5360272.

47. de Oliveira P.G., Termini L., Durigon E.L., Lepique A.P., Sposito A.C., Boccardo E. Diacerein: A potential multi-target therapeutic drug for COVID-19. Med Hypotheses. 2020 Nov; 144: 109920. doi: 10.1016/j.mehy.2020.109920. Epub 2020 Jun 1. PMID: 32534337; PMCID: PMC7263256.

48. Almezgagi M., Zhang Y., Hezam K., Shamsan E., Gamah M., Al-Shaebi F., Abbas A.B., Shoaib M., Saif B., Han Y., Jia R., Zhang W. Diacerein: Recent insight into pharmacological activities and molecular pathways. Biomed Pharmacother. 2020 Nov; 131: 110594. doi: 10.1016/j.biopha.2020.110594. Epub 2020 Aug 25. PMID: 32858499.

49. RECOVERY Collaborative Group, Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L., Staplin N., Brightling C., Ustianowski A., Elmahi E., Prudon B., Green C., Felton T., Chadwick D., Rege K., Fegan C., Chappell L.C., Faust S.N., Jaki T., Jeffery K., Montgomery A., Rowan K., Juszczak E., Baillie J.K., Haynes R., Landray M.J. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021 Feb 25; 384 (8): 693–704. doi: 10.1056/NEJMoa2021436. Epub 2020 Jul 17. PMID: 32678530; PMCID: PMC7383595.

50. Kumar P. Co-aerosolized Pulmonary Surfactant and Ambroxol for COVID-19 ARDS Intervention: What Are We Waiting for? Front Bioeng Biotechnol. 2020 Sep 25; 8: 577172. doi: 10.3389/fbioe.2020.577172. PMID: 33102461; PMCID: PMC7546362.

51. Olaleye O.A., Kaur M., Onyenaka C.C. Ambroxol Hydrochloride Inhibits the Interaction between Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein's Receptor Binding Domain and Recombinant Human ACE2. bioRxiv [Preprint]. 2020 Sep 14: 2020.09.13. 295691. doi: 10.1101/2020.09.13.295691. PMID: 32995775; PMCID: PMC7523101.

52. de Oliveira G.L.V., Oliveira C.N.S., Pinzan C.F., de Salis L.V.V., Cardoso C.R.B. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front Immunol. 2021 Feb 24; 12: 635471. doi: 10.3389/fimmu.2021.635471. PMID: 33717181; PMCID: PMC7945592.

53. Akour A. Probiotics and COVID-19: is there any link? Lett Appl Microbiol. 2020 Sep; 71 (3): 229–234. doi: 10.1111/lam.13334. Epub 2020 Jul 16. PMID: 32495940; PMCID: PMC7300613.


Review

For citations:


Zykov K.A., Sinitsyn E.A., Rvacheva A.V., Bogatyreva A.O., Zykova A.A., Shapovalenko T.V. Rationale for a New Outpatient Drug Therapy Algorithm in COVID-19 Patients Based on the Principle of «Multi-hit» Approach. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(3-4):49-61. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-3-4-49-61

Views: 1468


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)