Approach to Searching for the Producers of Antibiotics That Overcome Drug Resistance of Microorganisms
https://doi.org/10.37489/0235-2990-2021-66-7-8-4-12
Abstract
Currently, the problem of antibiotic resistance of opportunistic and pathogenic microorganisms is extremely urgent. In order to find new effective natural antibiotics, it is necessary to intensify the search process. In the gradual selection of the most promising producers, we introduced the stage of determining the antibiotic activity of the culture fluid of the studied natural strains against the clinical isolates of hospital microorganisms with multiple resistance to medical antibiotics. Determining the species affiliation of potential producers allows to select those producers of a particular species that differ in the antimicrobial spectrum of activity from those described in the literature. Four strains of actinomycetes that showed activity against resistant clinical isolates of yeast Candida albicans, C.famata, C.parapsilosis and Cryptococcus neoformans were selected, namely: Nocardia soli INA 01217, Streptomyces bottropensis INA 01214, S.chromofuscus INA 01211 and S.netropsis INA 01190. The N.soli INA 01217 strain also shows antibiotic activity against the Gram-negative bacterium Escherichia coli ATCC 25922. These strains of actinobacterial producers were selected for subsequent chemical studies of the antimicrobial compounds formed by them.
About the Authors
M. V. DemiankovaRussian Federation
Mariya V. Demiankova — Junior Researcher
Moscow
V. S. Sadykova
Russian Federation
Vera S. Sadykova — Head of the Laboratory of Taxonomic Study and Collection of Microorganism Cultures, Deputy Director
Moscow
A. A. Glukhova
Russian Federation
Alla A. Glukhova — Researcher
Moscow
T. A. Efimenko
Russian Federation
Tatiana A. Efimenko — Senior Researcher
Moscow
Yu. V. Boykova
Russian Federation
Yuliya V. Boykova — Researcher
Moscow
N. D. Malkina
Russian Federation
Natalia D. Malkina — Researcher
Moscow
V. G. Kormilitsina
Russian Federation
Victoria G. Kormilitsina — Laboratory Assistant-Researcher
Moscow
S. O. Sharapchenko
Russian Federation
Sofya O. Sharapchenko — Laboratory Assistant-Researcher
Moscow
I. G. Sumarukova
Russian Federation
Irina G. Sumarukova — Researcher
Moscow
B. F. Vasilieva
Russian Federation
Byazilya F. Vasilieva — Researcher
Moscow
T. D. Ivankova
Russian Federation
Tatiana D. Ivankova — Junior Researcher
Moscow
L. P. Terekhova
Russian Federation
Larissa P. Terekhova — Leading Researcher
Moscow
N. I. Gabrielyan
Russian Federation
Nina I. Gabrielyan — Head of Department
Moscow
O. V. Efremenkova
Russian Federation
Olga V. Efremenkova — Head of the Sector
11/1 Bolshaya Pirogovskaya st., Moscow, 119021
References
1. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Available online: http://www.cdc.gov/drugresistance/threat-report-2013.
2. O’Neill J. The Review on Antimicrobial Resistance. Tackling drug-resistant infections globally: Final report and recommendations, 2016. Available online: http://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.
3. Berdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot. 2012; 65: 385–395.
4. Efimenko Т.А., Terekhova L.P., Efremenkova O.V. Current state the problem of antibiotic resistance of pathogens. Antibiotiki i Khimioter. 2019; 64 (5-6): 64–68. (in Russian)
5. Glukhova A.A., Karabanova A.A., Yakushev A.V., Semenyuk I.I., Boykova Y.V., Malkina N.D., Efimenko T.A., Ivankova T.D., Terekhova L.P., Efremenkova O.V. Antibiotic Activity of Actinobacteria from Digestive Tract of Millipede Nedyopus dawydoffiae (Diplopoda). Antibiotics (Basel). 2018; 7: 4: 94. doi: 10.3390/antibiotics7040094.
6. Valagurova E.V., Kozyritskaya V.E., Iutinskaya G.A. Actinomycetes of Streptomyces genus. (in Russian) Publisher «Scientific Book»: Kiev, Ukraine, 2003; 1–645.
7. Goodfellow M., Kämpfer P., Busse H.-J., Suzuki K., Ludwig W., Whitman W.B. (eds.). Bergey’s manual of systematic bacteriology, 2 nd ed.; Springer-Verlag, New York, USA; 2012; 5: A: 376–419, 1455–1768.
8. Demiankova M.V., Kalashnikova E.A., Glukhova A.A., Ivankova T.D., Terekhova L.P., Boykova Y.V., Efimenko T.A., Efremenkova O.V. Activity of the strain Streptomyces hydrogenans against phytopathogenic fungi. Open Acc J Envi Soi Sci (OAJESS). 2018; 1: 5:103–105, doi:10.32474/OA-JESS.2018.01.000121.
9. Brown M.S., Akopiants K., Resceck D.M., McArthur H.A.I., McCormick E., Reynolds K.A. Biosynthetic Origins of the natural product, thiolactomycin: A unique and selective inhibitor of type II dissociated fatty acid synthases. J Am Chem Soc. 2003; 125 (34): 10166–10167. doi: 10.1021/ja034540i.
10. Fulmer T. Fatty acid synthase II (FASII) pathway. Science-Business eXchange 2009, 2, 11, 430–430. doi: 10.1038/scibx.2009.430.
11. Tatsuta K., Gunji H., Tajima S., Ishiyama T., Imai S., Okuyama S., Fukatsu S. Biosynthetic studies on oleandomycin by incorporation of the chemically synthesized aglycones. J Antibiot. 1990; 43: 909–911. doi: 10.7164/antibiotics.43.909.
12. Vilches C., Hernandez C., Mendez C., Salas J.A. Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus. J Bact. 1992; 174: 1: 161–165. doi: 10.1128/jb.174.1.161-165.1992.
13. Schimana J., Fiedler H.-P., Groth I., Submuth R., Beil W., Walker M., Zeeck A. Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tü 6040. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot. 2000; 53 (8): 779–787. doi: 10.7164/antibiotics.53.779.
14. Hollstein U. Actinomycin. Chemistry and mechanism of action. Chem Rev. 1974; 74 (6): 625–652. doi: 10.1021/cr60292a002.
15. Hütter R., Keller-Schierlein W., Knüsel F., Prelog V., Rodgers G. C. The metabolic products of microorganisms. Boromycin. Helvetica Chimica Acta. 1967; 50 (6): 1533–1539
16. Waisvisz J.M., van der Hoeven M.G., van Peppen J., Zwennis W.C.M. Bottromycin. I. A new sulfur-containing antibiotic. J Am Chem Soc. 1957; 79 (16): 4520–4521. doi: 10.1021/ja01573a072.
17. Yamazaki M., Yamashita T., Harada T., Nishikiori T., Saito S., Shimada N., Fujii A. 44-Homooligomycins A and B, new anti-tumor antibiotics from Streptomyces bottropensis producing organisms, fermentation, isolation, structure elucidation and biological properties. J Antibiot. 1992; 45 (2): 171–179. doi: 10.7164/antibiotics.45.171.
18. Leach B.E., Calhoun K.M., Johnson LeRoy E., Teeters C.M., Jackson W.G. Char-treusin, a new antibiotic produced by Streptomyces chartreusis, a new species. J Am Chem Soc. 1953; 75 (16): 4011–4012. doi: 10.1021/ja01112a040.
19. Wu Q., Liang J., Lin S., Zhou X., Bai L., Deng Z., Wang Z. Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in Streptomyces chartreusis NRRL 3882. Antim Agent Chem. 2011; 55 (3): 974–982. doi: 10.1128/AAC.01130-10.
20. Miller-Wideman M., Makkar N., Tran M., Isaac B., Biest N., Stonard R. Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot (Tokyo). 1992; 45 (6): 914–921. doi: 10.7164/antibiotics.45.914.
21. Fujiwara A., Tazoe M., Hoshino T., Sekine Y., Fujiwara M. Structural studies of an antracyclinone antibiotic SM-173B produced by Streptomyces chromofuscus SM-173. Symposium on the Chemistry of Natural Products, symposium papers. 1979; 22: Abstr. No. 59: 448–455.
22. Akiko F., Mitsuhiko F., Tatsuo H., Yuzuru S., Masaaki T. Antibiotic SM-173B. Patent US 4206129, June 3, 1980.
23. Kulkarni M., Gorthi S., Banerjee G., Chattopadhyay P. Production, characterization and optimization of actinomycin D from Streptomyces hydrogenans IB310, an antagonistic bacterium against phytopathogens. Biocatalysis and Agricultural Biotechnology, 2017, 10, 69-74. doi: 10.1016/j.bcab.2017.02.009.
24. Hayashi T., Noto T., Nawata Y., Okazaki H., Sawada M., Ando K. Cyanocycline A, a new antibiotic. Taxonomy of the producing organism, fermentation, isolation and characterization. J Antibiot (Tokyo). 1982; 35 (7): 771–777. doi: 10.7164/antibiotics.35.771.
25. Gould S.J., He W., Cone M.C. New cyanocyclines from a cyanide-treated broth of Streptomyces lusitanus. J Nat Prod. 1993; 56 (8): 1239–1245. doi:10.1021/np50098a006.
26. Kluepfel D., Baker H. A., Piattoni G., Sehgal S. N., Sidorowicz A., Singh K., Vezina C. Naphthyridinomycin, a new broad-spectrum antibiotic. J Antibiot (Tokyo). 1975; 28 (7): 497–502. doi: 10.7164/antibiotics.28.497.
27. Villax I. Process of fermentation of chlortetracycline and tetracycline antibiotics. Patent US 3401088 A. Sept., 10, 1968.
28. Han Z., Xu Y., McConnell O., Liu L., Li Y., Qi S., Huang X., Qian P. Two antimycin a analogues from marine-derived actinomycete Streptomyces lusitanus. Mar Drugs. 2012; 10 (3): 668–676. doi: 10.3390/md10030668.
29. Finlay A.C., Hochstein F.A., Sobin B.A., Murphy F.X. Netropsin, a New antibiotic produced by a Streptomyces. J Am Chem Soc. 1951; 73 (1): 341–343. doi: 10.1021/ja01145a113.
30. Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C. Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S.peucetius var. caesius. Biothecnology and Bioengineering, 1969; 11 (6) 1101–1110. doi: 10.1002/bit.260110607.
31. Grein A., Spalla C., Di Marco A., Canevazzi G. Descrizione e classificazione di un attinomiceti (Streptomyces peucetius sp. nova) produttore di una sostanza attivita antitumorale: La daunomicina. (in Italian) G Microbiol. 1963; 11: 109–118.
32. Guilfoile P.G., Hutchinson C.R. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. PNAS. 1991; 88 (19): 8553–8557. doi: 10.1073/pnas.88.19.8553.
33. Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B., Scheld M., Spellberg B., Bartlett J. Bad bugs, no drugs: no ESKAPE! Clin Infect Dis. 2009; 48 (1): 1–12. doi: 10.1086/595011.
34. Tacconelli E., Magrini N., World Health Organisation. 2017, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Available on line: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25FebET_NM_WHO.pdf
35. Beardsley J., Halliday C.L., Chen S.C-A, Sorrell T.C. Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol. 2018, 13, 10, 1175–1191. doi:10.2217/fmb-2018-0059.
36. Fisher M.C., Hawkins N.J., Sanglard D., Gurr S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science. 2018; 360 (6390): 739–742. doi: 10.1126/science.aap7999.
37. Butler M.S., Cooper M.A. Antibiotics in the clinical pipeline in 2011. J Antibiot. 2011; 64 (6): 413–425. doi: 10.1038/ja.2011.44.
38. Butler M.S., Blaskovich M.A., Cooper M.A. Antibiotics in the clinical pipeline in 2013. J Antibiot. 2013; 66 (10): 571–591. doi: 10.1038/ja.2013.86.
39. Butler M.S., Blaskovich M.A., Cooper M.A. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot. 2017; 70 (1): 3–24. doi:10.1038/ja.2016.72.
40. Berdy J. Bioactive microbial metabolites. J Antibiot. 2005; 58 (1): 1–26. doi: 10.1038/ja.2005.
41. Baltz R.H. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol. 2006; 33 (7): 507–513. doi: 10.1007/s10295-005-0077-9.
Review
For citations:
Demiankova M.V., Sadykova V.S., Glukhova A.A., Efimenko T.A., Boykova Yu.V., Malkina N.D., Kormilitsina V.G., Sharapchenko S.O., Sumarukova I.G., Vasilieva B.F., Ivankova T.D., Terekhova L.P., Gabrielyan N.I., Efremenkova O.V. Approach to Searching for the Producers of Antibiotics That Overcome Drug Resistance of Microorganisms. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021;66(7-8):4-12. (In Russ.) https://doi.org/10.37489/0235-2990-2021-66-7-8-4-12