Antibiotic Sensitivity of Neisseria meningitidis Isolated From Patients with Generalized Forms of Meningococcal Infection and From Healthy Carriers
https://doi.org/10.37489/0235-2990-2022-67-5-6-19-24
Abstract
The study included 50 isolates of Neisseria meningitidis isolated from patients with generalized forms of meningococcal infection and 48 isolates, which were isolated from carriers. The isolates were identified by MALDI-TOF mass spectrometry using a Microflex LT mass spectrometer (Bruker Daltonics, Germany). Minimum inhibitory concentrations (MICs) of benzylpenicillin, ampicillin, ceftriaxone, meropenem, ciprofloxacin, azithromycin, rifampicin, and chloramphenicol were assessed by the method of serial agar dilution with interpretation of the results according to EUCAST 2021 criteria. Clinical resistance to penicillin was detected in 7% of isolates. However, all isolates with MIC >0.064 µg/ml (n=26) had mutations in the penA gene. Decreased sensitivity to rifampicin was found in four isolates isolated from patients and four isolated from carriers. Seven out of eight isolates with reduced sensitivity to rifampicin had mutations in the rpoB gene. Resistance to ceftriaxone, meropenem, ciprofloxacin was not detected.
About the Authors
E. A. MARTENSRussian Federation
Elvira A. Martens — Head of the Clinical Diagnostic Laboratory, Junior Researcher, Pediatric Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency; Assistant at the Department of Medical Microbiology North-Western State Medical University named after I. I. Mechnikov.
WOS Researcher ID: CAG4447-2022
Scopus Author ID: 57206470215
Saint-Petersburg
L. I. ZHELEZOVA
Russian Federation
Lyudmila I. Zhelezova — Ph. D. in medicine.
WOS Researcher ID: G-9662-2012
Scopus Author ID: 6505716185
Saint-Petersburg
V. V. GOSTEV
Russian Federation
Vladimir V. Gostev — Ph. D. in biology, Pediatric Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency, North-Western State Medical University named after I. I. Mechnikov.
WOS Researcher ID: P-1949-2016
WOS Researcher ID: 55614534400
197022, St. Petersburg, Professora Popova st., 9
D. V. LIKHOLETOVA
Russian Federation
Daria V. Likholetova — Laboratory researcher at the Department of Medical Microbiology and Molecular Epidemiology.
Saint-Petersburg
D. P. GLADIN
Russian Federation
Dmitry P. Gladin — Ph. D. in medicine.
Scopus Author ID: 6603374770
Saint-Petersburg
References
1. Collaborators GBDM. Global, regional, and national burden of meningitis, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2018; 17: 1061–1082. doi:10.1016/S1474-4422(18)30387-9.
2. Edmond K., Clark A., Korczak V.S., Sanderson C., Griffiths U.K., Rudan I. Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis. The Lancet Infectious diseases. 2010; 10: 317–328. doi:10.1016/S1473-3099(10)70048-7.
3. McNamara L.A., MacNeil J.R., Cohn A.C., Stephens D.S. Mass chemoprophylaxis for control of outbreaks of meningococcal disease. The Lancet Infectious diseases. 2018; 18: e272–e81. doi:10.1016/S1473-3099(18)30124-5.
4. Nadel S. Treatment of Meningococcal Disease. J Adolescent Health. 2016; 59: S21–8. doi:10.1016/j.jadohealth.2016.04.013.
5. Girgis N., Sultan Y., Frenck R.W., Jr., El-Gendy A., Farid Z., Mateczun A. Azithromycin compared with rifampin for eradication of nasopharyngeal colonization by Neisseria meningitidis. Pediatr Infect Dis J. 1998; 17: 816–819. doi:00006454-199809000-00013.
6. Sidorenko S., Zakharenko S., Lobzin Y., Zhdanov K., Martens E., Gostev V. et al. Observational study of nasopharyngeal carriage of Neisseria meningitis in applicants to a military academy in the Russian Federation. Intern J Infect Dis. 2019; 81: 12–16. doi:10.1016/j.ijid.2018.12.012.
7. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021. http://www.eucast.org.
8. Hong E., Deghmane A.E., Taha M.K. Acquisition of Beta-Lactamase by Neisseria meningitidis through Possible Horizontal Gene Transfer. Antimicrob Agents Chemother. 2018; 62 (9): e00831–18. doi:10.1128/AAC.00831-18.
9. Taha M-K., Vázquez J.A., Hong E., Bennett D.E., Bertrand S., Bukovski S. et al. Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis. Antimicrobial Agents Chemother. 2007; 51: 2784–2792. doi:10.1128/AAC.00412-07.
10. Zapun A., Morlot C., Taha M.K. Resistance to beta-Lactams in Neisseria ssp. Due to Chromosomally Encoded Penicillin-Binding Proteins. Antibiotics (Basel). 2016; 5 (4): 35. doI:10.3390/antibiotics5040035.
11. Deghmane A.E., Hong E., Taha M.K. Emergence of meningococci with reduced susceptibility to third-generation cephalosporins. J Antimicrob Chemother. 2017; .72 (1): 95–98. doI:10.1093/jac/dkw400.
12. Młynarczyk-Bonikowska B., Majewska A., Malejczyk M., Młynarczyk G., Majewski S. Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med Microbiol Immunol. 2020; 209 (2): 95-108. doi:10.1007/s00430-019-00651-4.
13. Galimand M., Gerbaud G., Guibourdenche M., Riou J.Y., Courvalin P. High-level chloramphenicol resistance in Neisseria meningitidis. N Engl J Med. 1998; 339: 868–874. doi:10.1056/NEJM199809243391302.
14. Eliakim-Raz N., Lador A., Leibovici-Weissman Y., Elbaz M., Paul M., Leibovici L. Efficacy and safety of chloramphenicol: joining the revival of old antibiotics? Systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2015; 70: 979–996. doi:10.1093/jac/dku530.
15. Singhal S., Purnapatre K.P., Kalia V., Dube S., Nair D., Deb M. et al. Ciprofloxacin-resistant Neisseria meningitidis, Delhi, India. Emerg Infect Dis. 2007; 13: 1614–1616. doi:10.3201/eid1310.060820.
16. Skoczynska A., Alonso J.M., Taha M.K. Ciprofloxacin resistance in Neisseria meningitidis, France. Emerg Infect Dis. 2008; 14: 1322–1323. doi:10.3201/eid1408.080040.
17. Wu H.M., Harcourt B.H., Hatcher C.P., Wei S.C., Novak R.T., Wang X. et al. Emergence of ciprofloxacin-resistant Neisseria meningitidis in North America. N Engl J Med. 2009; 360: 886–892. doi:10.1056/NEJMoa0806414.
18. Tzanakaki G., Georgakopoulou T., Xirogianni A., Papandreou A., Deghmane A-E., Magaziotou I. et al. First report of meningococcal ciprofloxacin resistance in Greece due to invasive isolates of the sequence type ST-3129. Eur J Clin Microbiol Infect Dis. 2020; 39: 2467–2470. doi:10.1007/s10096-020-03965-x.
19. Willerton L., Lucidarme J., Campbell H., Caugant D.A., Claus H., Jacobsson S. et al. Geographically widespread invasive meningococcal disease caused by a ciprofloxacin resistant non-groupable strain of the ST-175 clonal complex. J Infect. 2020; 81: 575–584. doi:10.1016/j.jinf.2020.08.030.
20. Potts C.C., Retchless A.C., McNamara L.A., Marasini D., Reese N., Swint S. et al. Acquisition of Ciprofloxacin Resistance Among an Expanding Clade of beta-Lactamase-Positive, Serogroup Y Neisseria meningitidis in the United States. Clin Infect Dis. 2021; 73: 1185–1193. doi:10.1093/cid/ciab358.
21. Taormina G., Campos J., Sweitzer J., Retchless A.C., Lunquest K., McNamara L.A. et al. Beta-lactamase-producing, ciprofloxacin-resistant Neisseria meningitidis isolated from a 5-month-old boy in the United States. J Pediatric Infect Dis Soc. 2021; 10: 379–381. dpi:10.1093/jpids/piaa085.
Review
For citations:
MARTENS E.A., ZHELEZOVA L.I., GOSTEV V.V., LIKHOLETOVA D.V., GLADIN D.P. Antibiotic Sensitivity of Neisseria meningitidis Isolated From Patients with Generalized Forms of Meningococcal Infection and From Healthy Carriers. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(5-6):19-24. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-5-6-19-24