Biapenem: Clinical and Microbiological Characteristics and the Place of The New Carbapenem In The Treatment of Severe Infections In The Hospital. Clinical Pharmacologists' Point of View
https://doi.org/10.37489/0235-2990-2022-67-5-6-81-91
Abstract
A new carbapenem antibiotic — biapenem — previously used only in Japan and Southeast Asia, was registered in Russia in 2021. The article analyzes the antimicrobial, pharmacokinetic, and clinical characteristics of biapenem in detail, provides pharmacodynamic justifications for antibiotic dosing. The most important properties and advantages of biapenem related to antimicrobial action (higher activity and eradication potential against Pseudomonas aeruginosa), the highest stability among carbapenems to carbapenemases of classes D (OXA-48-type) and B (NDM-type) are emphasized, which determines a new option for the treatment of infections caused by carbapenem-resistant Enterobacterales (biapenem in combination with polymyxin/colistin and/or tigecycline). Among the features of pharmacokinetics, it is necessary to highlight low albumin binding (3.7%), good tissue penetration, as well as stable pharmacokinetics of biapenem in patients in critical condition, septic shock, and those requiring renal replacement therapy. Pharmacodynamic modeling has established the most optimal dosage of biapenem in sepsis and septic shock: 300 mg (3-hour infusion) every 6 hours or 600 mg every 12 hours. A dosage regimen of 300 mg QID is preferable in patients undergoing continuous renal replacement therapy. The effectiveness of biapenem has been documented in numerous studies, which also show good antibiotic tolerability and safety: the frequency of side effects averaged 2% and was lower than that of other carbapenems. Biapenem can be effectively and safely prescribed to the most problematic elderly patients with serious comorbid conditions and impaired kidney and liver function.
About the Authors
S. V. YAKOVLEVRussian Federation
Sergey V. Yakovlev — D. Sc. in medicine.
115446, Moscow, Kolomensky Drive, 4
M. P. SUVOROVA
Russian Federation
Margarita P. Suvorova — Ph. D. in medicine.
Moscow
References
1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022 Feb 12; 399 (10325): 629-655. doi:10.1016/S0140-6736 (21)02724-0.
2. Yakovlev S.V., Suvorova M.P. , Beloborodov V.B., Basin E.E., Eliseeva E.V., Kovelenov S.V. i dr. Rasprostranennost' i klinicheskoe znachenie nozokomial'nykh infektsij v lechebnykh uchrezhdeniyakh Rossii: issledovanie ERGINI. Antibiotiki i Khimioter. 2016; 61 (5–6): 32–42. (in Russian).
3. Palagin I.S., Sukhorukova M.V., Dekhnich A.V. i soavt. Antibiotikorezistentnost' vozbuditelej vnebol'nichnykh infektsij mochevyvodyashchikh putej v Rossii: rezul'taty mnogotsentrovogo issledovaniya «DARMIS-2018». Klin Mikrobiol Antimikrob Khimioter. 2019; 21 (2): 134–146. (in Russian)
4. Karta antibiotikorezistentnosti. https://amrmap.ru/. Data dostupa 15.07.2022 g. (in Russian)
5. Basker M.J. The carbapenem family. J Antimicrob Chemother. 1982 Jul; 10 (1): 4–7. doi:10.1093/jac/10.1.4.
6. Papp-Wallace K.M., Endimiani A., Taracila M.A., Bonomo R.A. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011 Nov; 55 (11): 4943–4960. doi:10.1128/AAC.00296-11.
7. Perry C.M., Ibbotson T. Biapenem. Drugs. 2002; 62 (15): 2221–2234; discussion 2235. doi:10.2165/00003495-200262150-00005.
8. Hikida M., Kawashima K., Yoshida M., Mitsuhashi S. Inactivation of new carbapenem antibiotics by dehydropeptidase-I from porcine and human renal cortex. J Antimicrob Chemother. 1992 Aug; 30 (2): 129–134. doi:10.1093/jac/30.2.129.
9. Li W., Jiao Z., Liu Y., Yao J., Li G., Dong J. Role of organic anion transporter 3 in the renal excretion of biapenem and potential drug-drug interactions. Eur J Pharm Sci. 2021 Jul 1; 162: 105814. doi:10.1016/j.ejps.2021.105814.
10. Day I.P., Goudie J., Nishiki K., Williams P.D. Correlation between in vitro and in vivo models of proconvulsive activity with the carbapenem antibiotics, biapenem, imipenem/cilastatin and meropenem. Toxicol Lett. 1995 Apr; 76 (3): 239–243. doi:10.1016/0378-4274(95)80008-2.
11. Hikida M., Masukawa Y., Nishiki K., Inomata N. Low neurotoxicity of LJC 10,627, a novel 1 beta-methyl carbapenem antibiotic: inhibition of gamma-aminobutyric acidA, benzodiazepine, and glycine receptor binding in relation to lack of central nervous system toxicity in rats. Antimicrob Agents Chemother. 1993 Feb; 37 (2): 199–202. doi:10.1128/AAC.37.2.199.
12. Yang Y., Bhachech N., Bush K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. J Antimicrob Chemother. 1995 Jan; 35 (1): 75–84. doi:10.1093/jac/35.1.75.
13. El-Gamal M.I., Brahim I., Hisham N., Aladdin R., Mohammed H., Bahaaeldin A. Recent updates of carbapenem antibiotics. Eur J Med Chem. 2017 May 5; 131: 185–195. doi:10.1016/j.ejmech.2017.03.022.
14. Bassetti M., Merelli M., Temperoni C., Astilean A. New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob. 2013 Aug 28; 12: 22. doi:10.1186/1476-0711-12-22.
15. Suzuki Y., Nishinari C., Endo H., Tamura C., Jinbo K. Antimicrobial activities of carbapenems and fourth generation cephems against clinically isolated strains. Jpn J Antibiot. 2001 Sep; 54 (9): 473–490. Japanese.
16. Chen H.Y., Livermore D.M. Comparative in-vitro activity of biapenem against enterobacteria with beta-lactamase-mediated antibiotic resistance. J Antimicrob Chemother. 1994 Mar; 33 (3): 453–464. doi:10.1093/jac/33.3.453.
17. Hoban D.J., Jones R.N., Yamane N., Frei R., Trilla A., Pignatari A.C. In vitro activity of three carbapenem antibiotics. Comparative studies with biapenem (L-627), imipenem, and meropenem against aerobic pathogens isolated worldwide. Diagn Microbiol Infect Dis. 1993 Nov-Dec; 17 (4): 299–305. doi:10.1016/0732-8893(93)90039-a.
18. Rajenderan S., Balaji V., Anandan S., Sahni R.D., Tansarli G.S., Falagas M.E. Determination of MIC distribution of arbekacin, cefminox, fosfomycin, biapenem and other antibiotics against gram-negative clinical isolates in South India: a prospective study. PLoS One. 2014 Jul 28; 9 (7): e103253. doi:10.1371/journal.pone.0103253
19. Chen H.Y., Livermore D.M. In-vitro activity of biapenem, compared with imipenem and meropenem, against Pseudomonas aeruginosa strains and mutants with known resistance mechanisms. J Antimicrob Chemother. 1994 May; 33 (5): 949–958. doi:10.1093/jac/33.5.949.
20. Hikida M., Terashima S., Sato Y., Okamoato R., Inoue M. Comparative antibacterial activity of carbapenems against P.aeruginosa (1). Jpn J Antibiot. 2001 Nov; 54 (11): 571–579. Japanese.
21. Yamada K., Yamamoto Y., Yanagihara K., Araki N., Harada Y., Morinaga Y., Izumikawa K., Kakeya H., Hasegawa H., Kohno S., Kamihira S. In vivo efficacy and pharmacokinetics of biapenem in a murine model of ventilator-associated pneumonia with Pseudomonas aeruginosa. J Infect Chemother. 2012 Aug; 18 (4): 472-478. doi:10.1007/s10156-011-0359-2.
22. Aldridge K.E,. Morice N., Schiro D.D. In vitro activity of biapenem (L627), a new carbapenem, against anaerobes. Antimicrob Agents Chemother. 1994 Apr; 38 (4): 889–893. doi:10.1128/AAC.38.4.889.
23. Bush K. Past and Present Perspectives on β-Lactamases. Antimicrob Agents Chemother. 2018; 62 (10): e01076-18.
24. Yakovlev S.V., Suvorova M.P., Bykov A.O. Infektsii, vyzvannye karbapenemorezistentnymi enterobakteriyami: epidemiologiya, klinicheskoe znachenie i vozmozhnosti optimizatsii antimikrobnoj terapii. Antibiotiki i khimioter. 2020; 65 (5–6): 41–69. (in Russian)
25. Potter R.F., D'Souza A.W., Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat. 2016; 29: 30–46.
26. Sukhorukova M.V., Edel'shtein M.V., Ivanchik N.V. i dr. Antibiotikorezistentnost' nozokomial'nykh shtammov Enterobacterales v statsionarakh Rossii: rezul'taty mnogotsentrovogo epidemiologicheskogo issledovaniya «MARAFON 2015– 2016». Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya 2019; 21 (2): 147–159. (in Russian)
27. Livermore D.M., Mushtaq S., Morinaka A., Ida T., Maebashi K., Hope R. Activity of carbapenems with ME1071 (disodium 2,3-diethylmaleate) against Enterobacteriaceae and Acinetobacter spp. with carbapenemases, including NDM enzymes. J Antimicrob Chemother. 2013 Jan; 68 (1): 153–158. doi:10.1093/jac/dks350.
28. Gotoh K., Miyoshi M., Mayura I.P.B., Iio K., Matsushita O., Otsuka F., Hagiya H. In vitro effectiveness of biapenem against IMP-producing Enterobacteriaceae. J Med Microbiol. 2021 Oct; 70 (10). doi:10.1099/jmm.0.001430.
29. Ageevets V.A., Partina I.V., Lisitsyna E.S., Ilina E.N., Lobzin Y.V., Shlyapnikov S.A., Sidorenko S.V. Emergence of carbapenemase-producing Gram-negative bacteria in Saint Petersburg, Russia. Int J Antimicrob Agents. 2014 Aug; 44 (2): 152–155. doi:10.1016/j.ijantimicag.2014.05.004.
30. Ageevets V. A., Sulyan O. S., Avdeeva A. A., Chulkova P. S., Gostev V. V., Ageevets I. V., Golikova M. V., Alieva K. N., Gladin D. P., Sidorenko S. V. Comparative activity of carbapenem antibiotics against gram-negative carbapenemase producers of different groups. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2022; 67 (1–2): 9–15. https://doi.org/10.37489/0235-2990-2022-67-1-2-9-15. (in Russian)
31. Gordina E. M., Bozhkova S. A., Shabanova V. V. Biapenem activity against meropenemresistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2022; 67: 3–4: 23–28. https://doi.org/0.37489/0235-2990-2022-67-3-4-23-28.
32. Griffith D.C., Morgan E.E., Dudley M.N., Loutit J.S. A Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of Biapenem in Healthy Adult Subjects. Antimicrob Agents Chemother. 2021 Mar 8; 65 (5): e02612-20. doi:10.1128/AAC.02612-20.
33. Karino F., Deguchi N., Kanda H., Ohe M., Kondo K., Tada M., Kuraki T., Nishimura N., Moriyama H., Ikawa K., Morikawa N., Isobe T. Evaluation of the efficacy and safety of biapenem against pneumonia in the elderly and a study on its pharmacokinetics. J Infect Chemother. 2013 Feb; 19 (1): 98–102. doi:10.1007/s10156-012-0463-y.
34. Liu Y., Li Z., Yang C., Zheng H., Lv Y., Chen H., Zhang Y., Shi S. Tolerability and pharmacokinetics of biapenem following single and multiple intravenous administrations in healthy Chinese subjects: an open-label, randomized, single-center study. Drug Res (Stuttg). 2013 Aug; 63 (8): 396–403. doi:10.1055/s-0033-1341498
35. Muto Y., Mikami Y., Sakakibara S., Shimizu A., Niida M., Kataoka H., Ito F., Suzuki K., Kijima K., Maebashi K., Takata T., Hikida M., Takeda K., Unno M. Pharmacokinetic and pharmacodynamic properties of biapenem, a carbapenem antibiotic, in rat experimental model of severe acute pancreatitis. Pancreas. 2008 Mar; 36 (2): 125–132. doi:10.1097/MPA.0b013e3181568ed7.
36. Yamada K., Yamamoto Y., Yanagihara K., Araki N., Harada Y., Morinaga Y., Izumikawa K., Kakeya H., Hasegawa H., Kohno S., Kamihira S. In vivo efficacy and pharmacokinetics of biapenem in a murine model of ventilator-associated pneumonia with Pseudomonas aeruginosa. J Infect Chemother. 2012 Aug; 18 (4): 472–478. doi:10.1007/s10156-011-0359-2.
37. Nakashima M., Uematsu T., Ueno K., Nagashima S., Inaba H., Nakano M., Kosuge K., Kitamura M., Sasaki T. Phase 1 study of L-627, biapenem, a new parenteral carbapenem antibiotic. Int J Clin Pharmacol Ther Toxicol. 1993 Feb; 31 (2): 70–76.
38. Tarao F., Miura T., Saito A. et al. Pharmacokinetic study of biapenem. Jpn J Chemother. 1996; 44 (10): 769–775.
39. Vora A., Tiwaskar M. Biapenem. J Assoc Physicians India. 2022 Jan; 70 (1): 11–12. PMID:35062817.
40. Shah P.M. Parenteral carbapenems. Clin Microbiol Infect. 2008 Jan; 14 Suppl 1: 175–180. doi:10.1111/j.1469-0691.2007.01868.x.
41. Kozawa O., Uematsu T., Matsuno H., Niwa M., Takiguchi Y., Matsumoto S., Minamoto M., Niida Y., Yokokawa M., Nagashima S., Kanamaru M. Pharmacokinetics and safety of a new parenteral carbapenem antibiotic, biapenem (L-627), in elderly subjects. Antimicrob Agents Chemother. 1998 Jun; 42 (6): 1433–1436. doi:10.1128/AAC.42.6.1433.
42. Koeppe P., Höffler D., Fitzen B. Biapenem pharmacokinetics in healthy volunteers and in patients with impaired renal function. Arzneimittelforschung. 1997 Nov; 47 (11): 1250–1256.
43. Akashita G., Hosaka Y., Noda T., Isoda K., Shimada T., Sawamoto K., Miyamoto K., Taniguchi T., Sai Y. PK/PD analysis of biapenem in patients undergoing continuous hemodiafiltration. J Pharm Health Care Sci. 2015 Nov 14; 1: 31. doi:10.1186/s40780-015-0031-6.
44. Ikawa K., Morikawa N., Ikeda K., Suyama H. Pharmacokinetic modeling and dosage adaptation of biapenem in Japanese patients during continuous venovenous hemodiafiltration. J Infect Chemother. 2008 Feb; 14 (1): 35–39. doi:10.1007/s10156-007-0572-1.
45. Li L., Li X., Xia Y., Chu Y., Zhong H., Li J., Liang P., Bu Y., Zhao R., Liao Y., Yang P., Lu X., Jiang S. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front Pharmacol. 2020 May 29; 11: 786. doi:10.3389/fphar.2020.00786.
46. Suyama H., Ikawa K., Morikawa N., Ikeda K., Fujiue Y., Morikawa S., Kaneko K., Kuwabara M., Yamanoue T. Pharmacokinetics and pharmacodynamics of biapenem in critically ill patients under continuous venovenous hemodiafiltration. Jpn J Antibiot. 2008 Oct; 61 (5): 303–313.
47. Zhanel G.G., Wiebe R., Dilay L., Thomson K., Rubinstein E., Hoban D.J., Noreddin A.M., Karlowsky J.A. Comparative review of the carbapenems. Drugs. 2007; 67 (7): 1027–1052. doi:10.2165/00003495-200767070-00006.
48. Mouton J.W., Dudley M.N., Cars O., Derendorf H., Drusano G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother. 2005 May; 55 (5): 601–607. doi:10.1093/jac/dki079.
49. Dong J., Chen Y.C., Xiong W., Zhao Y.F., Sun Y.B., Lu Y., Liu Y.H., Li W.Y., Chen X.J. Efficacy and safety of biapenem against lower respiratory tract infections in elderly Chinese patients and optimal dosing regimen based on pharmacokinetic/pharmacodynamic analysis. J Chemother. 2016 Oct; 28 (5): 403–410. doi:10.1179/1973947815Y.0000000078.
50. Dong J., Xiong W., Chen Y., Zhao Y., Lu Y., Zhao D., Li W., Liu Y., Chen X. Optimal dosing regimen of biapenem in Chinese patients with lower respiratory tract infections based on population pharmacokinetic/pharmacodynamic modelling and Monte Carlo simulation. Int J Antimicrob Agents. 2016 Mar; 47 (3): 202–209. doi:10.1016/j.ijantimicag.2015.12.018.
51. Hang Y., Chen Y., Xue L., Sun S., Liu L., Gao J., Xie C., Zhang X., Zhu J., Jin J., Miao L. Evaluating biapenem dosage regimens in intensive care unit patients with Pseudomonas aeruginosa infections: a pharmacokinetic/pharmacodynamic analysis using Monte Carlo simulation. Int J Antimicrob Agents. 2018 Mar; 51 (3): 484–487. doi:10.1016/j.ijantimicag.2017.07.005.
52. Takata T., Aizawa K., Shimizu A., Sakakibara S., Watabe H., Totsuka K. Optimization of dose and dose regimen of biapenem based on pharmacokinetic and pharmacodynamic analysis. J Infect Chemother. 2004 Apr; 10 (2): 76–85. doi:10.1007/s10156-003-0292-0.
53. Ikawa K., Morikawa N., Ikeda K., Ohge H., Sueda T., Suyama H., Doi_M., Kuwabara M. Pharmacokinetic-pharmacodynamic target attainment analysis of biapenem in adult patients: a dosing strategy. Chemotherapy. 2008; 54 (5): 386–394. doi:10.1159/000152459.
54. Jia B., Lu P., Huang W., Li C., Huang A., Zhou X., Zhang W., Wu G., Zhang G. A multicenter, randomized controlled clinical study on biapenem and imipenem/cilastatin injection in the treatment of respiratory and urinary tract infections. Chemotherapy. 2010; 56 (4): 285–290. doi:10.1159/000319952.
55. Okimoto N., Kawai Y., Katoh T., Hayashi T., Kurihara T., Miyashita N. Clinical effect of biapenem on nursing and healthcare-associated pneumonia (NHCAP). J Infect Chemother. 2015 Aug; 21 (8): 592–595. doi:10.1016/j.jiac.2015.05.001.
56. Wang X., Zhang X., Zong Z., Yu R., Lv X., Xin J., Tong C., Hao Q., Qin Z., Xiong Y., Liu H., Ding G., Hu C.; Biapenem Study Collaborative Group. Biapenem versus meropenem in the treatment of bacterial infections: a multicenter, randomized, controlled clinical trial. Indian J Med Res. 2013 Dec; 138 (6): 995–1002.
57. Yang F., Zhao X., Wu J.F. et al. A multicentre, open-label, randomized clinical trial to compare biapenem with meropenem in the treatment of bacterial pneumonia and urinary tract infections. Chin J Infect Chemother. 2007; 7: 73–78.
58. Matsumoto F., Inoue M., Sakurai I. et al. A comparative study of biapenem and imipenem/cilastatin in lower respiratory infections. Jpn J Chemother. 2000; 48: 45–67.
59. Kawada Y., Deguchi T., Tsukamoto T. et al. Comparative study of biapenem and imipenem/cilastatin in complicated urinary tract infections. Jpn J Chemother. 2000; 48: 218–232.
60. Brismar B., Akerlund J.E., Sjöstedt S., Johansson C., Törnqvist A., Bäckstrand B., Bång H., Andåker L., Gustafsson P.O., Darle N., Angerås M., Falk A., Tunevall G., Kasholm-Tengve B., Skau T., Nyström P.O., Gasslander T., Hagelbäck A., Olsson-Liljequist B., Eklund A.E., Nord C.E. Biapenem versus imipenem/cilastatin in the treatment of complicated intra-abdominal infections: report from a Swedish Study Group. Scand J Infect Dis. 1996; 28 (5): 507–512. doi:10.3109/00365549609037949.
61. Ikawa K., Nakashima A., Morikawa N., Ikeda K., Murakami Y., Ohge H., Derendorf H., Sueda T. Clinical pharmacokinetics of meropenem and biapenem in bile and dosing considerations for biliary tract infections based on site-specific pharmacodynamic target attainment. Antimicrob Agents Chemother. 2011 Dec; 55 (12): 5609–5615. doi:10.1128/AAC.00497-11.
62. Pei G., Yin W., Zhang Y., Wang T., Mao Y., Sun Y. Efficacy and safety of biapenem in treatment of infectious disease: a meta-analysis of randomized controlled trials. J Chemother. 2016; 28 (1): 28–36. doi:10.1179/1973947814Y.0000000226.
63. Karino F., Miura K., Fuchita H., Koba N., Nishikawa E., Hotta T., Okimoto T., Iwamoto S., Tsubata Y., Tada M., Hamaguchi S., Honda T., Ohe M., Sutani A., Kuraki T., Takeyama H., Isobe T. Efficacy and safety of piperacillin/tazobactam versus biapenem in late elderly patients with nursingand healthcare-associated pneumonia. J Infect Chemother. 2013 Oct; 19 (5): 909–915. doi:10.1007/s10156-013-0605-x.
64. Namkoong H., Kameyama Y., Yasuda H., Nakayama S., Kaneko H., Kawashima C., Terajima T., Maezawa K., Hayashi T., Sandoh M., Ishii M., Tasaka S., Kanayama A., Kobayashi I., Betsuyaku T., Kizu J., Iwata S., Sato Y., Hasegawa N. The efficacy, safety, and pharmacokinetics of biapenem administered thrice daily for the treatment of pneumonia in the elderly. J Infect Chemother. 2014 Jun; 20 (6): 356–360. doi:10.1016/j.jiac.2013.12.010.
65. Программа СКАТ (Стратегия Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи. Российские клинические рекомендации / Под ред. С.В.Яковлева, Н.И.Брико, С.В.Сидоренко, Д.Н.Проценко. М.: Издательство «Перо», 2018 — 156 с.
66. Burillo A., Muñoz P., Bouza E. Risk stratification for multidrug-resistant Gram-negative infections in ICU patients. Curr Opin Infect Dis. 2019; 32 (6): 626–637.
67. Bassetti M., Carnelutti A., Peghin M. Patient specific risk stratification for antimicrobial resistance and possible treatment strategies in gramnegative bacterial infections. Expert Rev Anti Infect Ther. 2017; 15 (1): 55–65.
68. Beloborodov V.B., Goloshchapov O.V., Gusarov V.G., Dekhnich A.V., Zamyatin M.N., Zubareva N.A., Zyryanov S.K., Kamyshova D.A., Klimko N.N., Kozlov R.S., Kulabukhov V.V., Petrushin M.A., Polushin Jyu.S., Popov D.A., Rudnov V.A., Sidorenko S.V., Sokolov D.V., Shlyk I.V., Ejdel'shtejn M.V., Yakovlev S.V. Metodicheskie rekomendatsii Rossijskoj nekommercheskoj obshchestvennoj organizatsii «Assotsiatsiya anesteziologov-reanimatologov», Mezhregional'noj obshchestvennoj organizatsii «Al'yans klinicheskikh khimioterapevtov i mikrobiologov», Mezhregional'noj assotsiatsii po klinicheskoj mikrobiologii i antimikrobnoj khimioterapii (MAKMAKh), obshchestvennoj organizatsii «Rossijskij Sepsis Forum» «Diagnostika i antimikrobnaya terapiya infektsij, vyzvannykh polirezistentnymi shtammami mikroorganizmov» (obnovlenie 2022 g.). Vestnik Anesteziologii i Reanimatologii. 2022; 19 (2): 84–114. https://doi.org/10.21292/2078-5658-2022-19-2-84-114. (in Russian)
69. Kuchers’ the Use of Antibiotics. Ed. by M. Lidsay Grayson. 6th edition. Hodder Arnold, an Hachette UK Company. — 2010.
70. Chen I.R., Lin S.N., Wu X.N., Chou S.H., Wang F.D., Lin Y.T. Clinical and Microbiological Characteristics of Bacteremic Pneumonia Caused by Klebsiella pneumoniae. Front Cell Infect Microbiol. 2022 Jun 23; 12: 903682. doi:10.3389/fcimb.2022.903682.
71. Choby J.E., Howard-Anderson J., Weiss D.S. Hypervirulent Klebsiella pneumoniae — clinical and molecular perspectives. J Intern Med. 2020 Mar; 287 (3): 283–300. doi:10.1111/joim.13007.
Review
For citations:
YAKOVLEV S.V., SUVOROVA M.P. Biapenem: Clinical and Microbiological Characteristics and the Place of The New Carbapenem In The Treatment of Severe Infections In The Hospital. Clinical Pharmacologists' Point of View. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(5-6):81-91. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-5-6-81-91