Evaluation of the Bactericidal Activity of Gramicidin S Against Streptococcus pneumoniae and Staphylococcus aureus Clinical Isolates with Single and Multiple Exposure
https://doi.org/10.37489/0235-2990-2022-67-7-8-8-18
Abstract
Background. Sore throat of infectious and inflammatory origin is one of the most common reasons for the prescription of antimicrobial drugs. The use of antimicrobial peptides (AMPs) for topical therapy may be a promising solution, due to the peculiarities of AMPs’ mechanism of action, taking into account the high importance of microbial resistance spread problem in relation to systemic etiotropic drugs.
The aim of the study was to assess the formation of resistance to AMP Gramicidin S (GS) of clinical isolates of Streptococcus pneumoniae and Staphylococcus aureus, including strains resistant to antimicrobial drugs during repeated exposure, in the setting close to their actual use in clinical practice.
Materials and methods. The object under study is AMP GS. The test microorganisms are reference strains of S.pneumoniae (ATCC 6303), S.aureus (ATCC 6538–P), and 10 strains of clinical isolates of each type of microorganisms, types with antimicrobial resistance (including MRSA). At the first stage, the antimicrobial activity of GS was evaluated by the method of microdilutions in plates by estimating the value of the minimum inhibitory and the minimum bactericidal concentrations (MIC and MBC, respectively). At the second stage, using reference strains and 4 clinical isolates of each microorganism, including types with antimicrobial resistance, resistance was formed in two ways simultaneously (with liquid and solid media) for 7 consecutive passages over 7 days with GS at concentrations equal to 0.5 and 1.0 MIC. The number of surviving microorganisms was estimated and the MIC and MBC were determined at each passage.
Results. At the first stage, the MIC of GS in relation to S.pneumoniae was 8 µg/ml for 5 strains, 16 µg/ml for 5 strains, and 4 µg/ml for one. For 10 out of 11 strains of S.aureus, including MRSA, the MIC of GS was 4 µg/ml (for 1 strain — 8 µg/ml). For 4 strains of S.pneumoniae, MBC of GS was equal to MIC (16 µg/ml), for 7 strains MBC was 4–8 times higher than MIC, and mostly amounted to 32 µg/ml (for 1 strain — 64 µg/ml). MBC for 6 strains of S.aureus was equal to MIC (4 µg/ml), for the 5 remaining strains MBC was 2–8 times higher than MIC, but did not exceed 64 µg/ml. At the second stage, it was found that the estimated values of GS MIC and MBC with repeated exposure to GS remained at the same level for 7 passages in all strains, including those resistant to antibiotics in liquid and solid media.
Conclusions. Gramicidin S demonstrated high bactericidal activity against reference strains and clinical isolates of leading pathogenic microorganisms S.pneumoniae and S.aureus, including strains resistant to systemic antimicrobial drugs, while MIC and MBC did not exceed concentrations contained in single doses of drugs used in clinical practice. During repeated exposure (7 passages in 7 days), there were no signs of the formation of resistance of test strains of pathogens, including those resistant to systemic antimicrobial medicines from the groups of beta-lactams, macrolides, fluoroquinolones, tetracyclines, aminoglycosides, etc.
About the Authors
A. V. GUROVRussian Federation
Alexander V. Gurov — D. Sc. in medicine, Professor, Pirogov Russian National Research Medical University; Sverzhevsky Scientific and Research Otolaryngology Clinical Institute
117152, Moscow, Zagorodnoye shosse, 18A, p. 2
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
K. E. BOROVKOVA
Russian Federation
Kristina Е. Borovkova — Head of the Laboratory of Microbiology
Leningrad region, Kuzmolovsy
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
K. L. KRYSHEN
Russian Federation
Kirill L. Kryshen — Ph. D. in biology
Leningrad region, Kuzmolovsy
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
L. R. NIKIFOROVA
Russian Federation
Lia R. Nikiforova — Researcher at the Laboratory of Microbiology
Leningrad region, Kuzmolovsy
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
J. V. SALMOVA
Russian Federation
Julia V. Salmova — Researcher at the Laboratory of Microbiology
Leningrad region, Kuzmolovsy
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов.
References
1. Kryukov А.I., Gurov А.V., Yushkina M.A., Izotova G.N. Peculiarities of clinical course of inflammatory diseases of the oropharynx of various etiologies and possibilities of local therapy. Vestnik Otorinolaringolii. 2019; 84 (5): 68–72 https://doi.org/10.17116/otorino20198405168. (in Russian)
2. Gurov A. V., Muzhichkova A.V., YUshkina M.A. Kompleksnyj podhod k lecheniyu vospalitel'nyh zabolevanij verhnih dyhatel'nyh putej. Lechebnoe Delo. 2021; 3: 23–29. https://doi.org/10.24412/2071-5315-2021-12356. (in Russian)
3. Sidorenko S.V., Dronov I.А. Amoxicillin in the treatment of acute respiratory infections in children: a dialogue between a microbiologist and a clinical pharmacologist. Ros Vestn Perinatol i Pediatr. 2020; 65 (3): 169–176. https://doi.org/10.21508/1027-4065-2020-65-3-169-176. (in Russian)
4. Resistance to antibiotics. WHO Newsletter. February 5, 2018. Available at: https://www.who.int/en/news-room/fact-sheets/detail/antibioticresistance (Accessed date: 13.08.2022) (in Russian)
5. Sidorenko S. V. Antimikrobnaya rezistentnost': mekhanizmy i puti preodoleniya. Molekulyarnye i biologicheskie aspekty himii, farmacevtiki i farmakologii: cbornik tezisov dokladov shestoj mezhdisciplinarnoj konferencii, Nizhnij Novgorod, 27–30 sentyabrya 2020 goda. / Eds: K.V. Kudryavceva i E.M. Paninoj. Moscow: Izdatel'stvo Pero, 2020; 95. (in Russian)
6. Bin Hafeez A., Jiang X., Bergen P.J., Zhu Y. Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci. 2021 Oct 28; 22 (21): 11691. doi:10.3390/ijms222111691.
7. Prenner E.J., Lewis R.N., McElhaney R.N. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim Biophys Acta. 1999 Dec 15; 1462 (1–2): 201–21. doi:10.1016/s0005-2736(99)00207-2.
8. Rodríguez A.A., Otero-González A., Ghattas M., Ständker L. Discovery, optimization, and clinical application of natural antimicrobial peptides. Biomedicines. 2021 Oct 3; 9 (10): 1381. doi:10.3390/biomedicines9101381.
9. Ghoreishi F.S., Roghanian R., Emtiazi G. Novel chronic wound healing by anti-biofilm peptides and protease. Adv Pharm Bull. 2022 May; 12 (3): 424–436. doi:10.34172/apb.2022.047.
10. Wenzel M., Rautenbach M., Vosloo J.A., Siersma T., Aisenbrey C.H.M., Zaitseva E., Laubscher W.E., van Rensburg W., Behrends J.C., Bechinger B., Hamoen L.W. The multifaceted antibacterial mechanisms of the pioneering peptide antibiotics tyrocidine and gramicidin S. mBio. 2018 Oct 9; 9 (5): e00802–18. doi:10.1128/mBio.00802-18.
11. Berditsch M., Lux H., Babii O., Afonin S., Ulrich A.S. Therapeutic potential of gramicidin S in the treatment of root canal infections. Pharmaceuticals (Basel). 2016 Sep 7; 9 (3): 56. doi:10.3390/ph9030056
12. Hale S.J.M., Wagner Mackenzie B., Lux C.A., Biswas K., Kim R., Douglas R.G. Topical antibiofilm agents with potential utility in the treatment of chronic rhinosinusitis: a narrative review. Front Pharmacol. 2022 Jun 13; 13: 840323. doi:10.3389/fphar.2022.840323.
13. GOST R ISO 20776-1-2010. Klinicheskie laboratornye issledovaniya i diagnosticheskie test-sistemy in vitro. Issledovanie chuvstvitel'nosti infekcionnyh agentov i ocenka funkcional'nyh harakteristik izdelij dlya issledovaniya chuvstvitel'nosti k antimikrobnym sredstvam. CHast' 1. Referentnyj metod laboratornogo issledovaniya aktivnosti antimikrobnyh agentov protiv bystrorastushchih aerobnyh bakterij, vyzyvayushchih infekcionnye bolezni. — Available at: http://docs.cntd.ru/document/1200083430 (Accessed: 03.08.2022) (in Russian)
14. Rekomendacii «Opredelenie chuvstvitel'nosti mikroorganizmov k antimikrobnym preparatam Versiya 2021-01». Mezhregional'naya associaciya po klinicheskoj mikrobiologii i antimikrobnoj himioterapii Available at: https://www.antibiotic.ru/files/321/clrecdsma2021.pdf (Accessed: 03.08.2022) (in Russian)
15. Parvekar P., Palaskar J., Metgud S., Maria R., Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020 Jul 23; 7 (1): 105–109. doi:10.1080/26415275.2020.1796674.
16. Rodríguez-Melcón C., Alonso-Calleja C., García-Fernández C., Carballo J., Capita R. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (Biocides and Antibiotics) in eight strains of Listeria monocytogenes. Biology (Basel). 2021 Dec 29; 11 (1): 46. doi:10.3390/biology11010046.
17. Knapp L., Amézquita A., McClure P., Stewart S., Maillard J.Y. Development of a protocol for predicting bacterial resistance to microbicides. Appl Environ Microbiol. 2015 Apr; 81 (8): 2652–2659. doi:10.1128/AEM.03843-14.
18. Clinical and Laboratory Standards Institute (CLSI). Methods for determining bactericidal activity of antimicrobial agents; Approved Guideline. CLSI documents M26-A. ISBN 1-56238-384-1). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, PA 19087, USA.
19. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). EUCAST Definitive Document E.Def 1.2, May 2000: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microbiol Infect. 2000 Sep; 6 (9): 503–508. doi:10.1046/j.1469-0691.2000.00149.x.
20. Essack S., Bell J., Burgoyne D.S., Duerden M., Shephard A. Topical (local) antibiotics for respiratory infections with sore throat: an antibiotic stewardship perspective. J Clin Pharm Ther. 2019 Dec; 44 (6): 829–837. doi:10.1111/jcpt.13012.
21. Pendleton J.N., Gorman S.P., Gilmore B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013 Mar;11 (3): 297–308. doi:10.1586/eri.13.12.
22. Dubos R.J. Studies on a bactericidal agent extracted from a soil bacillus: i. Preparation of the agent. Its activity in vitro. J Exp Med. 1939 Jun 30; 70 (1): 1–10. doi:10.1084/jem.70.1.1.
23. Gause G.F., Brazhnikova M.G. Gramicidin S and its use in the treatment of infected wounds. Nature. 1944; 154: 703. doi:10.1038/154703a0.
24. Gause G.F., Brazhnikova M.G. Gramicidin S Origin and mode of action. Lancet. 1944; 244: 715–716.
25. Betzel C., Rachev R., Dolashka P., Genov N. Actinomycins as proteinase inhibitors. Biochim Biophys Acta. 1993 Jan 15; 1161 (1): 47–51. doi:10.1016/0167-4838(93)90194-v.
26. Katsu T., Kobayashi H., Hirota T., Fujita Y., Sato K., Nagai U. Structureactivity relationship of gramicidin S analogues on membrane permeability. Biochim Biophys Acta. 1987 May 29; 899 (2): 159–170. doi:10.1016/0005-2736(87)90396-8.
27. Afonin S., Glaser R.W., Sachse C., Salgado J., Wadhwani P., Ulrich A.S. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Biochim Biophys Acta. 2014 Sep; 1838 (9): 2260–2268. doi:10.1016/j.bbamem.2014.03.017.
28. Zhang L., Rozek A., Hancock R.E. Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem. 2001 Sep 21; 276 (38): 35714–35722. doi:10.1074/jbc.M104925200.
29. Hartmann M., Berditsch M., Hawecker J., Ardakani M.F., Gerthsen D., Ulrich A.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother. 2010 Aug; 54 (8): 3132–3142. doi:10.1128/AAC.00124-10.
30. Wenzel M., Kohl B., Münch D., Raatschen N., Albada H.B., Hamoen L., Metzler-Nolte N., Sahl H.G., Bandow J.E. Proteomic response of Bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane. Antimicrob Agents Chemother. 2012 Nov; 56 (11): 5749–5757. doi:10.1128/AAC.01380-12.
31. Berditsch M., Afonin S., Reuster J., Lux H., Schkolin K., Babii O., Radchenko D.S., Abdullah I., William N., Middel V., Strähle U., Nelson A., Valko K., Ulrich A.S. Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Sci Rep. 2019 Nov 29; 9 (1): 17938. doi:10.1038/s41598-019-54212-z.
32. Krauss E.M., Chan S.I. Complexation and phase transfer of nucleotides by gramicidin S. Biochemistry. 1983 Aug 30; 22 (18): 4280–4291. doi:10.1021/bi00287a019.
33. Krauss E.M., Chan S.I. Complexation and phase transfer of nucleic acids by gramicidin S. Biochemistry. 1984 Jan 3; 23 (1): 73–77. doi:10.1021/bi00296a012.
34. de la Fuente-Núñez C., Reffuveille F., Haney E.F., Straus S.K., Hancock R.E. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog. 2014 May 22; 10 (5): e1004152. doi:10.1371/journal.ppat.1004152.
35. Cortay J.C., Cozzone A.J. Accumulation of guanosine tetraphosphate induced by polymixin and gramicidin in Escherichia coli. Biochim Biophys Acta. 1983 Feb 22; 755 (3): 467–473. doi:10.1016/0304-4165(83)90251-9.
36. Kuppusamy R., Willcox M., Black D.S., Kumar N. Short Cationic Peptidomimetic Antimicrobials. Antibiotics (Basel). 2019 Apr 18; 8 (2): 44. doi:10.3390/antibiotics802004460.
37. Berditsch M., Afonin S., Vladimirova T., Wadhwani P., Ulrich A.S. Antimicrobial peptides can enhance the risk of persistent infections. Front Immunol. 2012 Aug 1; 3: 222. doi:10.3389/fimmu.2012.00222.
38. Yeung A.T., Gellatly S.L., Hancock R.E. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol. Life Sci. 2011; 68: 2161–2176. doi:10.1007/s00018-011-0710-x.
39. Yang Q., Li M., Spiller O.B., Andrey D.O., Hinchliffe P., Li H., MacLean C., Niumsup P., Powell L., Pritchard M., et al. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat. Commun. 2017; 8: 2054. doi:10.1038/s41467-017-02149-0.
40. Hu C., Wen Q., Huang S., Xie S., Fang Y., Jin Y., Campagne R., Alezra V., Miclet E., Zhu J., Wan Y. Gramicidin-S-Inspired cyclopeptidomimetics as potent membrane-active bactericidal agents with therapeutic potential. ChemMedChem. 2021 Jan 19; 16 (2): 368–376. doi:10.1002/cmdc.202000568.
41. Rathman B.M., Allen J.L., Shaw L.N., Del Valle J.R. Synthesis and biological evaluation of backbone-aminated analogues of gramicidin S. Bioorg Med Chem Lett. 2020 Aug 1; 30 (15): 127283. doi:10.1016/j.bmcl.2020.127283.
42. Guan Q., Chen K., Chen Q., Hu J., Cheng K., Hu C., Zhu J., Jin Y., Miclet E., Alezra V., Wan Y. Development of Therapeutic Gramicidin S Analogues Bearing Plastic β,γ-Diamino Acids. ChemMedChem. 2020 Jun 17; 15 (12): 1089–1100. doi:10.1002/cmdc.202000097.
43. Yamamura H., Isshiki K., Fujita Y., Kato H., Katsu T., Masuda K., Osawa K., Miyagawa A. Gramicidin S-inspired antimicrobial cyclodextrin to disrupt gram-negative and gram-positive bacterial membranes. Medchemcomm. 2019 Jul 17; 10 (8): 1432–1437. doi:10.1039/c9md00229d.
44. Guan Q., Huang S., Jin Y., Campagne R., Alezra V., Wan Y. Recent advances in the exploration of therapeutic analogues of gramicidin s, an old but still potent antimicrobial peptide. J Med Chem. 2019 Sep 12; 62 (17): 7603–7617. doi:10.1021/acs.jmedchem.9b00156.
45. Swierstra J., Kapoerchan V., Knijnenburg A., van Belkum A., Overhand M. Structure, toxicity and antibiotic activity of gramicidin S and derivatives. Eur J Clin Microbiol Infect Dis. 2016 May; 35 (5): 763–769. doi:10.1007/s10096-016-2595-y.
46. Tamaki M., Takanashi K, .Harada T.,, Fujinuma K., Shindo M., Kimura M., Uchida Y. Novel cycloundecapeptides related to gramicidin S with both high antibiotic activity and low hemolytic activity. Chem Pharm Bull (Tokyo). 2011; 59 (12): 1481-1484. doi:10.1248/cpb.59.1481.
47. Derbal S., Hensler M., Fang W., Nizet V., Ghedira K., Nefzi A. On resin amino acid side chain attachment strategy for the head to tail synthesis of new glutamine containing gramicidin-S analogs and their antimicrobial activity. Bioorg Med Chem Lett. 2010 Oct 1; 20 (19): 5701–5704. doi:10.1016/j.bmcl.2010.08.015.
48. Solanas C., de la Torre B.G., Fernández-Reyes M., Santiveri C.M., Jiménez M.A., Rivas L., Jiménez A.I., Andreu D., Cativiela C. Therapeutic index of gramicidin S is strongly modulated by D-phenylalanine analogues at the beta-turn. J Med Chem. 2009 Feb 12; 52 (3): 664–674. doi:10.1021/jm800886n.
49. Jelokhani-Niaraki M., Hodges R.S., Meissner J.E., Hassenstein U.E., Wheaton L. Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes. Biophys J. 2008 Oct; 95 (7): 3306–3321. doi:10.1529/biophysj.108.137471.
50. Kawai M., Yamamura H., Tanaka R., Umemoto H., Ohmizo C., Higuchi S., Katsu T. Proline residue-modified polycationic analogs of gramicidin S with high antibacterial activity against both Gram-positive and Gramnegative bacteria and low hemolytic activity. J Pept Res. 2005 Jan; 65 (1): 98–104. doi:10.1111/j.1399-3011.2004.00204.x.
51. Kondejewski L.H., Farmer S.W., Wishart D.S., Kay C.M., Hancock R.E., Hodges R.S. Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. J Biol Chem. 1996 Oct 11; 271 (41): 25261–25268. doi:10.1074/jbc.271.41.25261.
52. Soejima Y., Hashiguchi A., Izumiya N. Syntheses and antibacterial activities of gramicidin S analogs containing L-ornithine in place of L-valine. Biosci Biotechnol Biochem. 1994 May; 58 (5): 826–829. doi:10.1271/bbb.58.826.
53. Ando S., Aoyagi H., Shinagawa S., Nishino N., Waki M., Kato T., Izumiya N. [4,4'-D-diaminopropionic acid]gramicidin S: a synthetic gramicidin S analog with antimicrobial activity against Gram-negative bacteria. FEBS Lett. 1983 Sep 5; 161 (1): 89–92. doi:10.1016/0014-5793(83)80736-4.
54. Yonezawa H., Kaneda M., Tominaga N., Higashi S., Izumiya N. Adsorption of 14C-labeled gramicidin S on cell of bacteria. J Biochem. 1981 Oct; 90 (4): 1087–1091. doi:10.1093/oxfordjournals.jbchem.a133560.
55. Derbal S., Hensler M., Fang W., Nizet V., Ghedira K., Nefzi A. On resin amino acid side chain attachment strategy for the head to tail synthesis of new glutamine containing gramicidin-S analogs and their antimicrobial activity. Bioorg Med Chem Lett. 2010 Oct 1; 20 (19): 5701–5704. doi:10.1016/j.bmcl.2010.08.015.
56. Gabidova A.E., Galynkin V.A. Osnovnye nachala vozniknoveniya rezistentnosti v biosfere. Mezhdunarodnyj Zhurnal Prikladnyh i Fundamental'nyh Issledovanij. 2017; 3–1: 92–102 Available at: https://applied-research.ru/ru/article/view?id=11407 (Accessed: 16.08.2022) (in Russian)
Review
For citations:
GUROV A.V., BOROVKOVA K.E., KRYSHEN K.L., NIKIFOROVA L.R., SALMOVA J.V. Evaluation of the Bactericidal Activity of Gramicidin S Against Streptococcus pneumoniae and Staphylococcus aureus Clinical Isolates with Single and Multiple Exposure. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(7-8):8-18. (In Russ.) https://doi.org/10.37489/0235-2990-2022-67-7-8-8-18