Удлинение интервала QT при лечении лекарственно-устойчивого туберкулёза
https://doi.org/10.37489/0235-2990-2023-68-11-12-67-74
Аннотация
В обзоре проанализированы научные статьи, руководства и результаты клинических испытаний о влиянии фторхинолонов, бедаквилина, нитроимидазолов и клофазимина на удлинение интервала QT. Представлена значимость своевременного и регулярного мониторинга кардиотоксичности и важность продолжения клинических испытаний для открытия противотуберкулёзных препаратов с удовлетворительным профилем безопасности.
Об авторе
А. В. КукурикаРоссия
Кукурика Анастасия Владимировна — специалист центра социально-значимых инфекций
Москва
Список литературы
1. Chung W. S., Lin C. L., Hung C. T., Chu Y. H., Sung F. C., Kao C. H. et al. Tuberculosis increases the subsequent risk of acute coronary syndrome: a nationwide population-based cohort study. Int J Tuberc Lung Dis., 2014; 18 (1): 79–83. doi: 10.5588/ijtld.13.0288.
2. Huaman M. A., Kryscio R. J., Fichtenbaum C. J., Henson D., Salt E., Sterling T. R. et al. Tuberculosis and risk of acute myocardial infarction: a propensity score-matched analysis. Epidemiol Infect. 2017; 145 (7): 1363–1367. doi: 10.1017/S0950268817000279.
3. Головина Г. А., Зафираки В. К., Космачева Е. В. Медикаментозно индуцированный синдром удлинённого интервала QT. Вестник аритмологии. 2020; 27 (3): 42–52. doi: https://doi.org/10.35336/VA-2020-342-52.
4. Gintant G., Sager P. T., Stockbridge N. Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov. 2016; 15 (7): 457–471. doi: 10.1038/nrd.2015.34.
5. Goldenberg I., Moss A. J. Long QT Syndrome. J Am Coll Cardiol. 2008; 51 (24): 2291–300. doi: 10.1016/j.jacc.2008.02.068.
6. Tisdale J. E. Drug-induced QT interval prolongation and torsades de pointes: Role of the pharmacist in risk assessment, prevention, and management. Can Pharm J (Ott). 2016; 149 (3): 139–152. doi: 10.1177/ 1715163516641136.
7. Быкова А. А., Чашкина М. И., Серова М. В., Симонов А. В., Копылов Ф. Ю. Распространённость удлинения интервала QT у пациентов, получающих противотуберкулёзную химиотерапию. Кардиология и сердечно-сосудистая хирургия. 2019; 12 (2): 146–151. doi: https://doi.org/10.17116/kardio201912021146.
8. Johnson J. N., Ackerman M. J. QTc: how long is too long? Br J Sports Med. 2009; 43 (9): 657–662. doi: 10.1136/bjsm.2008.054734.
9. Kannankeril P., Roden D. M., Darbar D. Drug-induced long QT syndrome. Pharmacol Rev. 2010; 62 (4): 760–781. doi: 10.1124/pr.110.003723.
10. Schwartz P. J., Woosley R. L. Predicting the unpredictable: drug-Induced QT prolongation and torsades de pointes. J Am Coll Cardiol. 2016; 67 (13): 1639–50. doi: 10.1016/j.jacc.2015.12.063.
11. Van Noord C., Eijgelsheim M., Stricker B. H. Ch. Drugand non-drug-associated QT interval prolongation. Brit. J. Clin. Pharmacology, 2010, vol. 70, № 1, pp. 16–23. DOI: 10.1111/j.1365-2125.2010.03660.x
12. Guidance for Industry. International Conference on Harmonization. E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic Drugs. U.S. Food and Drug Administration, HHS, 2005.
13. Guidance on requirements for QTc measurement in ECG monitoring when introducing new drugs and shorter regimens for the treatment of Drug-resistant Tuberculosis. USAID/Challenge ТB, 2017.
14. Briasoulis A., Agarwal V., Pierce W. J. QT prolongation and torsade de pointes induced by fluoroquinolones: infrequent side effects from commonly used medications. Cardiology. 2011; 120: 103–110. doi: 10.1159/000334441.
15. Kang J., Wang L., Chen X.-L. et al. Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol. 2001; 59 (1): 122–126. doi: 10.1124/mol.59.1.122.
16. Olliaro P. L., Merle C., Mthiyane T., Bah B., Kassa F., Amukoye E., Diaye A., Perronne C., Lienhardt C., McIlleron H., Fieldingb K. Effects on the QT interval of a gatifloxacin-containing regimen versus standard treatment of pulmonary tuberculosis. Antimicrob Agents Chemother. 2017; 61 (7): 1834–1816. doi: 10.1128/AAC.01834-16.
17. Tsikouris J. P., Peeters M. J., Cox C. D., Meyerrose G. E., Seifert C. F. Effects of three fluoroquinolones on QT analysis after standard treatment courses. Ann Noninvasive Electrocardiol. 2006; 11 (1): 52–6. doi: 10.1111/j.1542-474X.2006.00082.x.
18. Bloomfield D., Kost J., Ghosh K., Hreniuk D., Hickey L., Guitierrez M., Gottesdiener K.,Wagner J. The effect of moxifloxacin on QTc and implications for the design of thorough QT studies. Clin Pharmacol Ther. 2008; 84 (4): 475–480. doi: 10.1038/clpt.2008.33.
19. Noel G. J., Goodman D. B., Chien S., Solanki B., Padmanabhan M., Natarajan J. Measuring the effects of supratherapeutic doses of levofloxacin on healthy volunteers using four methods of QT correction and periodic and continuous ECG recordings. J Clin Pharmacol. 2004; 44 (5): 464–73. doi: 10.1177/0091270004264643.
20. Taubel J., Naseem A., Harada T., Wang D., Arezina R., Lorch U., Camm A. J. Levofloxacin can be used effectively as a positive control in thorough QT/QTc studies in healthy volunteers. Br J Clin Pharmacol. 2009;. 69 (4): 391–400. doi: 10.1111/j.1365-2125.2009.03595.x.
21. Ball P. Quinolone induced QT interval prolongation: a not unexpected class effect. J. Antimicrob Chemother. 2000; 45 (5): 557–559. doi: 10.1093/jac/45.5.557.
22. Chen X., Cass J. D., Bradley J. A. et al. QT prolongation and proarrhythmia by moxifloxacin: concordance of preclinical models in relation to clinical outcome. Br J Pharmacol. 2005; 146 (6): 792–799. doi: 10.1038/sj.bjp.0706389.
23. Morganroth J., Dimarco J. P., Anzueto A., Niederman M. S., Choudhri S. CAPRIE Study Group. A randomized trial comparing the cardiac rhythm safety of moxifloxacin vs levofloxacin in elderly patients hospitalized with community-acquired pneumonia. Chest. 2005; 128 (5); 3398–3406. doi: 10.1378/chest.128.5.3398.
24. Technical report on the pharmacokinetics and pharmacodynamics (PK/PD) of medicines used in the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2018.
25. Grosjean P., Urien S. Re-evaluation of moxifloxacin pharmacokinetics and their direct effect on the QT interval. J Clin Pharmacol. 2012; 52 (3): 329–338. doi: 10.1177/0091270011398361.
26. Yan L. K., Zhang J., Ng M. J., Dang Q. Statistical characteristics of moxifloxacin-induced QTc effect. J Biopharm Stat. 2010; 20 (3): 497–507. doi: 10.1080/10543400903581945.
27. Haverkamp W., Kruesmann F., Fritsch A., van Veenhuyzen D., Arvis P. Update on the cardiac safety of moxifloxacin. Curr Drug Saf. 2012; 7 (2): 149–163. doi: 10.2174/157488612802715735.
28. Le Berre M. A., Stass H., Choudri S. H., Arvis P. Relationship of plasma concentration and changes in the QTc interval in hospitalized patients receiving intravenous moxifloxacin for the treatment of community-acquired pneumonia (CAP). European Congress of Clinical Microbiology and Infectious Diseases. 2007; 2069.
29. Badshah A., Janjua M., Younas F., Halabi A. R., Cotant J. F. Moxifloxacininduced QT prolongation and torsades: an uncommon effect of a common drug. Am J Med Sci. 2009; 338 (2): 164–166. doi: 10.1097/MAJ.0b013e3181a3c2c9.
30. Khan F., Ismail M., Khan Q., Ali Z. Moxifloxacin-induced QT interval prolongation and torsades de pointes: a narrative review. Expert Opin Drug Saf. 2018; 17 (10): 1029–1039. doi: 10.1080/14740338.2018.1520837.
31. Stylianou A., Roger J., Stephens K. A statistical assessment of QT data following placebo and moxifloxacin dosing in thorough QT studies. J Biopharm Stat. 2008; 18 (3): 502–516. doi: 10.1080/10543400801995460.
32. Florian J. A., Tornoe C. W., Brundage R., Parekh A., Garnett C. E. Population pharmacokinetic and concentration-QTc models for moxifloxacin: pooled analysis of 20 thorough QT studies. J Clin Pharmacol. 2011; 51 (8): 1152–1162. doi: 10.1177/0091270010381498.
33. Rubinstein E., Camm J. Cardiotoxicity of fluoroquinolones. J Antimicrob Chemother. 2002; 49 (4): 593–596. doi: 10.1093/jac/49.4.593.
34. Taubel J., Prasad K., Rosano G., Ferber G., Wibberley H., Cole S. T., Van Langenhoven L., Fernandes S., Djumanov D., Sugiyama A. Effects of the fluoroquinolones moxifloxacin and levofloxacin on the QT subintervals: sex differences in ventricular repolarization. J Clin Pharmacol. 2020; 60 (3): 400–408. doi: 10.1002/jcph.1534.
35. Cholo M. C., Mothiba M. T., Four B., Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017; 72 (2): 338–353. doi: 10.1093/jac/dkw426.
36. Cox V., Tommas M., Sa A., Furin J., Quelapio M., Koura K. G., Padanilam X., Dravniece G., Piubello A. QTc and anti-tuberculosis drugs: A perfect storm or a tempest in a teacup? Review of evidence and a risk assessment. Int J Tuberc Lung Dis. 2018. doi: 10.5588/ijtld.18.0423.
37. Dalberto P. F., de Souza E. V., Abbadi B. L., Neves C. E., Rambo R. S., Ramos A. S., Macchi F. S., Machado P., Bizarro C. V., Basso L. A. Handling the hurdles on the way to anti-tuberculosis drug development. Front Chem. 2020; 8: 586294. doi: 10.3389/fchem.2020.586294.
38. Report of the Guideline Development Group Meeting on the use of bedaquiline in the treatment of multidrug-resistant tuberculosis (WHO/HTM/TB/2017.01). Geneva, World Health Organization, 2017.
39. Review of available evidence on the use of bedaquiline for the treatment of multidrug-resistant tuberculosis: Data analysis report Prepared for: The World Health Organization, 2017.
40. Fox G. J., Menzies D. A Review of the evidence for using bedaquiline (TMC207) to treat multi-drug resistant tuberculosis. Infect Dis Ther. 2013; 2 (2): 123–144. doi: 10.1007/s40121-013-0009-3.
41. Diacon A. H., Pym A., Grobusch M. P., de los Rios J. M., Gotuzzo E., Vasilyeva I. et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014; 371 (8): 723–732. doi: 10.1056/NEJMoa1313865.
42. Diacon A. H., Dawson R., Von Groote-Bidlingmaier F., Symons G., Venter A., Donald P. R. et al. Randomized dose-ranging study of the 14-day early bactericidal activity of bedaquiline (TMC207) in patients with sputum microscopy smear-positive pulmonary tuberculosis. Antimicrob Agents Chemother. 2013; 57 (5): 2199–2203. doi: 10.1128/AAC.02243-12.
43. Guglielmetti L., Jaspard M., Le Dû D. et al. Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J. 2017; 49 (3): 1601799. doi: 10.1183/13993003.01799-2016.
44. Guglielmetti L., Tiberi S., Burman M., Kunst H.., Wejse C, Togonidze T. et al. QT prolongation and cardiac toxicity of new tuberculosis drugs in Europe: a Tuberculosis Network European Trialsgroup (TBnet) study. Eur Respir J. 2018; 52: 1800537. doi: 10.1183/13993003.00537-2018.
45. Guglielmetti L., Barkane L., Le Dû D. et al. Safety and efficacy of exposure to bedaquiline-delamanid in multidrug-resistant tuberculosis: a case series from France and Latvia. Eur Respir J. 2018; 51 (3): 1702550. doi: 10.1183/13993003.02550-2017.
46. Tadolini M., Lingtsand R., Tiberi S. et al. First case of extensively drugresistant tuberculosis treated with both delamanid and bedaquiline. Eur Respir J. 2016; 48 (3): 935–938. doi: 10.1183/13993003.00637-2016.
47. Tadolini M., Lingtsang R., Tiberi S. et al. Cardiac safety of extensively drug-resistant tuberculosis regimens including bedaquiline, delamanid and clofazimine. Eur Respir J. 2016; 48 (5): 1527–1529. doi: 10.1183/13993003.01552-2016.
48. Pontali E., Sotgiu G., Tiberi S. et al. Cardiac safety of bedaquiline: a systematic and critical analysis of the evidence. Eur Respir J. 2017; 50 (5): 1701462. doi: 10.1183/13993003.01462-2017.
49. Ndjeka N., Conradie F., Schnippel K. et al. Treatment of drug-resistant tuberculosis with bedaquiline in a high HIV prevalence setting: an interim cohort analysis. Int J Tuberc Lung Dis. 2015; 19 (8): 979–985. doi: 10.5588/ijtld.14.0944.
50. Борисов С. Е., Филиппов А. В., Иванова Д. А., Иванушкина Т. Н., Литвинова Н. В., Гармаш Ю. Ю. Эффективность и безопасность основанных на использовании бедаквилина режимов химиотерапии у больных туберкулёзом органов дыхания: непосредственные и окончательные результаты. Туберкулёз и болезни лёгких. 2019; 97 (5): 28-40. doi: https://doi.org/10.21292/2075-1230-2019-97-5-28-40.
51. Жукова Е. М., Вохминова Л. Г., Кудлай Д. А. Влияние современной химиотерапии туберкулёза с МЛУ/ШЛУ на изменение у больных интервала QT на ЭКГ. Туберкулёз и болезни лёгких. 2019; 97 (11): 19–22. doi: https://doi.org/10.21292/2075-1230-2019-97-11-19-22.
52. Можокина Г. Н., Самойлова А. Г. Кардиотоксические свойства фторхинолонов и бедаквилина. Туберкулёз и болезни лёгких. 2019; 97 (4): 56–62. doi: https://doi.org/10.21292/2075-1230-2019-97-4-56-62.
53. Тихонова Л. Ю., Соколова В. В., Тарасюк И. А., Екименко А. М. и др. Опыт применения препарата бедаквилин у больных туберкулёзом с множественной лекарственной устойчивостью возбудителя в Амурской области. Туберкулёз и болезни лёгких. 2018; 96 (6): 45–50. doi: https://doi.org/10.21292/2075-1230-2018-96-6-45-50.
54. Sutherland H. S., Tong A. S. T., Choi P. J., Blaser A., Conole D., Franzblau S. G., Lotlikar M. U., Cooper C. B., Upton A. M., Denny W. A., Palmer B. D. 3,5-Dialkoxypyridine analogues of bedaquiline are potent antituberculosis agents with minimal inhibition of the hERG channel. Bioorg Med Chem. 2019; 27 (7): 1292–1307. doi: 10.1016/j.bmc.2019.02.026.
55. World Health Organization (WHO). Global Tuberculosis Report 2019, World Health Organization: Geneva, Switzerland, 2019.
56. World Health Organization (WHO). Global tuberculosis report 2020, World Health Organization: Geneva, Switzerland, 2020.
57. World Health Organization. The use of delamanid in the treatment of multidrug-resistant tuberculosis. Interim policy guidance. WHO/HTM/ TB2014.23. Geneva, World Health Organization, 2014.
58. Lewis M. J., Sloan D. J. The role of delamanid in the treatment of drugresistant tuberculosis. Ther Clin Risk Management. 2015; 11: 779–791. doi: 10.2147/TCRM.S71076.
59. World Health Organization. The use of delamanid in the treatment of multidrug-resistant tuberculosis in children and adolescents: interim policy guidance. WHO/HTM/TB/2016.14. Geneva, World Health Organization, 2016.
60. Diacon A. H., Dawson R., Hanekom M. et al. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2011; 15 (7): 949–954. doi: 10.5588/ijtld.10.0616.
61. Hewison C., Ferlazzo G., Avaliani Z. et al. Six-month response to delamanid treatment in MDR TB patients. Emerg Infect Dis. 2017; 23 (10): 1746– 1748. doi: 10.3201/eid2310.170468.
62. Mok J., Kang H., Hwang S. H. et al. Interim outcomes of delamanid for the treatment of MDRand XDR-TB in South Korea. J Antimicrob Chemother. 2018; 73 (2): 503–508. doi: 10.1093/jac/dkx373.
63. Gler M. T., Skripconoka V., Sanchez-Garavito E., Xiao H., Cabrera-Rivero J. L., Vargas-Vasquez D. E., Gao M., Awad M., Park S.-K., Shim T. S. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012; 366 (23): 2151−2160. doi: 10.1056/NEJMoa1112433.
64. Blair H. A., Scott L. J. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs. 2015; 75 (1): 91–100. doi: 10.1007/ s40265-014-0331-4.
65. Gupta R., Geiter L. J., Hafkin J. et al. Delamanid and QT prolongation in the treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2015; 19 (10): 1261–1262. doi: 10.5588/ijtld.15.0541.
66. Hafkin J., Hittel N., Martin A. et al. Early outcomes in MDR-TB and XDRTB patients treated with delamanid under compassionate use. Eur Respir J. 2017; 50 (1): 1700311. doi: 10.1183/13993003.00311-2017.
67. Mohr E., Hughes J., Reuter A. et al. Delamanid for rifampicin-resistant tuberculosis: a retrospective study from South Africa. Eur Respir J. 2018; 51 (6): 1800017. doi: 10.1183/13993003.00017-2018.
68. Ferlazzo G., Mohr E., Chinmay L. et al. Early safety and efficacy of the combination of bedaquiline and delamanid for the treatment of patients with drug-resistant tuberculosis in Armenia, India, and South Africa: a retrospective cohort study. Lancet Infect Dis. 2018; 18 (5): 536–544. doi: 10.1016/S1473-3099(18)30100-2.
69. Lee S. F. K., Laughon B. E., McHugh T. D., Lipman M. New drugs to treat difficult tuberculous and nontuberculous mycobacterial pulmonary disease. Curr Opin Pulm Med. 2019; 25 (3): 271–280. doi: 10.1097/MCP. 0000000000000570.
70. Migliori G. B., Pontali E., Sotgiu G. et al. Combined use of delamanid and bedaquiline to treat multidrug-resistant and extensively drugresistant tuberculosis: a systematic review. Int J Mol Sci. 2017; 18 (2): 341. doi: 10.3390/ijms18020341.
71. Kuksa L., Barkane L., Hittel N. et al. Final treatment outcomes of multidrugand extensively drug-resistant tuberculosis patients in Latvia receiving delamanid-containing regimens. Eur Respir J. 2017; 50 (5): 1701105. doi: 10.1183/13993003.01105-2017.
72. Liu Y., Matsumoto M., Ishida H., Ohguro K., Yoshitake M., Gupta R., et al. Delamanid: from discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis. 2018; 111: 20–30. doi: 10.1016/j.tube. 2018.04.008.
73. Sotgiu G., Pontali E., Centis R. et al. Delamanid (OPC-67683) for treatment of multi-drug-resistant tuberculosis. Expert Rev Anti Infect Ther. 2015; 13 (3): 305–315. doi: 10.1586/14787210.2015.1011127.
74. Mallikaarjun S., Wells C., Petersen C. et al. Delamanid coadministered with antiretroviral drugs or antituberculosis drugs shows no clinically relevant drug-drug interactions in healthy subjects. Antimicrob Agents Chemother. 2016; 60 (10): 5976–5985. doi: 10.1128/AAC.00509-16.
75. Марьяндышев А. О., Лорсанов С. М., Хайдарханова З. Б. , Хункарсултанов С. Б., Перхин Д. В., Свешникова О. М., Гайда А. И., Привольнев В. В. Результаты применения деламанида в лечении туберкулёза с множественной и широкой лекарственной устойчивостью возбудителя в Российской Федерации. Туберкулёз и болезни легких. 2019; 97 (11): 67–68. doi: https://doi.org/10.21292/2075-1230-2019-9711-67-68.
76. Maryandyshev A., Pontali E., Tiberi S. et al. Bedaquiline and delamanid combination treatment of 5 patients with pulmonary extensively drugresistant tuberculosis. Emerg Infect Dis. 2017; 23 (10): 1718–1721. doi: 10.3201/eid2310.170834.
77. Наумов А. Г., Павлунин А. В. Перспективы применения таргетной химиотерапии деламанидом в схемах лечения больных туберкулёзом с множественной/широкой лекарственной устойчивостью возбудителя. Успехи, возможности или неопределенность? Туберкулёз и болезни лёгких. 2018; 96 (11): 74–82. doi: https://doi.org/10.21292/ 2075-1230-2018-96-11-74-82.
78. FDA Briefing Document. Pretomanid Tablet, 200 mg. Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC). 2019.
79. Baptista R., Fazakerley D. M., Beckmann M., Baillie L., Mur L. A. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci Rep. 2018; 8 (1): 5084. doi: 10.1038/s41598-018-23110-1.
80. De Miranda Silva C., Hajihosseini A., Myrick J., Nole J., Louie A., Schmidt S., Drusano G. L. Effect of moxifloxacin plus pretomanid against mycobacterium tuberculosis in log phase, acid phase, and nonreplicatingpersister phase in an in vitro assay. Antimicrob Agents Chemother. 2018; 63 (1): 1695–1618. doi: 10.1128/AAC.01695-18.
81. Keam S. J. Pretomanid: first approval. Drugs. 2019; 79 (16): 1797–1803. doi: 10.1007/s40265-019-01207-9.
82. Srivastava S., Deshpande D., Magombedze G., van Zyl J., Cirrincione K., Martin K., Bendet P., Berg A., Hanna D., Romero K., Hermann D., Gumbo T. Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics. J Antimicrob Chemother. 2020; 75 (2): 392–399. doi: 10.1093/jac/dkz460.
83. Tweed С. D., Dawson R., Burger D. A., Conradie A., Crook A. M., Mendel C. M., Conradie F., Diacon A. H., Ntinginya N. E., Everitt D. E., Haraka F., Li M., van Niekerk C. H., Okwera A., Rassool M. S., Reither K., Sebe M. A., Staples S., Variava E., Spigelman M. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir Med. 2019; 7 (12): 1048–1058. doi: 10.1016/s2213-2600(19)30366-2.
84. Wen S., Jing W., Zhang T., Zong Z., Xue Y., Shang Y., Wang F., Huang H., Chu N., Pang Y. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis. 2019; 38 (7): 1293–1296. doi: 10.1007/s10096-019-03551-w.
85. Li M., Saviolakis G. A., El-Amin W., Makhene M. K., Osborn B., Nedelman J., Yang T. J., Everitt D. Phase 1 study of the effects of the tuberculosis treatment pretomanid, alone and in combination with moxifloxacin, on the QTc interval in healthy volunteers. Clin Pharmacol Drug Dev. 2021; 10 (6): 634–646. doi: 10.1002/cpdd.898.
86. Li H., Salinger D. H., Everitt D., Li M., Del Parigi A., Mendel C., Nedelman J. R. Long-term effects on QT prolongation of pretomanid alone and in combinations in patients with tuberculosis. Antimicrob Agents Chemother. 2019; 63 (10): 445–19. doi: 10.1128/AAC.00445-19.
87. Conradie F., Diacon A. H., Ngubane N., Howell P., Everitt D., Crook A. M., Mendel C. M., Egizi E., Moreira J., Timm J., McHugh T. D., Wills G. H., Bateson A., Hunt R., Van Niekerk C., Li M., Olugbosi M., Spigelman M. Treatment of highly drug-resistant pulmonary tuberculosis. The new England journal of medicine. 2020; 382 (10): 892–902. doi: 10.1056/ nejmoa1901814.
88. Diacon A. H., Dawson R., Von Groote-Bidlingmaier F., Symons G., Venter A., Donald P. R. et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med. 2015; 191 (8): 943–953. doi: 10.1164/rccm.2014101801OC.
89. Wallis R. S. Cardiac safety of extensively drug-resistant tuberculosis regimens including bedaquiline, delamanid and clofazimine. Eur Respir J. 2016; 48 (5): 1526–1527. doi: 10.1183/13993003.01207-2016.
90. Anderson R., Theron A. J., Nel J. G., Durandt C., Cholo M. C., Feldman C., Tintinger G. R. Clofazimine, but not isoniazid or rifampicin, augments platelet activation in vitro. Front Pharmacol. 2018; 9: 1335. doi: 10.3389/fphar.2018.01335.
91. Choudhri S. H., Harris L., Butany J. W., Keystone J. S. Clofazimine induced cardiotoxicity — a case report. Lepr Rev. 1995; 66 (1): 63–68. doi: 10.5935/0305-7518.19950009.
92. Dannemann B., Bakare N., De Marez T. et al. QTcF prolongation in a phase II trial of TMC207 plus background regimen as treatment for MDR-TB: effect of co-administration of clofazimine. ICAAC. 2012; 52: A1259.
93. Yoon H. Y., Jo K. W., Nam G. B. et al. Clinical significance of QT-prolonging drug use in patients with MDR-TB or NTM disease. Int J Tuberc Lung Dis. 2017; 21 (9): 996–1001. doi: 10.5588/ijtld.17.0174.
94. WHO consolidated guidelines on tuberculosis, module 4: treatment — drug-resistant tuberculosis treatment. World Health Organization: Geneva, Switzerland, 2020.
95. Dalcolmo M., Gayoso R., Sotgiu G., D’Ambrosio L., Rocha J. L., Borga L. et al. Effectiveness and safety of clofazimine in multidrugresistant tuberculosis: a nationwide report from Brazil. Eur Respir J. 2017; 49 (3). 1602445. doi: 10.1183/13993003.02445-2016.
Рецензия
Для цитирования:
Кукурика А.В. Удлинение интервала QT при лечении лекарственно-устойчивого туберкулёза. Антибиотики и Химиотерапия. 2023;68(11-12):67-74. https://doi.org/10.37489/0235-2990-2023-68-11-12-67-74
For citation:
Kukurika A.V. QT-Interval Prolongation in the Treatment of Drug-Resistant Tuberculosis. Antibiot Khimioter = Antibiotics and Chemotherapy. 2023;68(11-12):67-74. (In Russ.) https://doi.org/10.37489/0235-2990-2023-68-11-12-67-74