Prediction of Aztreonam Effectiveness Against Klebsiella pneumoniae Based on the Results of Antimicrobial Susceptibility Testing with Increased Inoculum
https://doi.org/10.37489/0235-2990-2024-69-3-4-42-50
EDN: FSGBXG
Abstract
Background. The minimum inhibitory concentration (MIC) does not predict the risk of antibacterial resistance development due to a small sample of tested bacteria. Minimum inhibitory concentration at an increased inoculum (MICHI) may become a suitable parameter for this purpose as a sample of tested bacteria is larger while the method of determination remains easy.
The aim of the study was to evaluate the potential of using MICHI as a parameter for predicting the resistance development in Klebsiella pneumoniae to aztreonam.
Methods. Aztreonam MIC and MICHI values were assessed against two strains of K. pneumoniae using the microdilution method (0.2 ml volume; inoculum of 5×105 and 5×107 CFU/ml, respectively) and compared the results with the effect of aztreonam in a dynamic in vitro model, in which aztreonam regimen of 2 grams every 8 hours as a 2-hour infusion for 5 days was simulated.
Results. The efficacy of aztreonam against K. pneumoniae observed in the dynamic model was consistent with the MICHIs values assessed based on bacterial viability. During the visual assessment, the MICHIs values were greatly overestimated due to excessive turbidity caused by the formation of filamentous forms of bacteria exposed to aztreonam.
Conclusions. The MICHI parameter can be used to predict the development of resistance in K. pneumoniae to aztreonam when assessing the values of this parameter by the number of viable cells, but not by the visual boundary of bacterial growth.
Keywords
About the Authors
K. N. AlievaRussian Federation
Kamilla N. Alieva — Ph. D. in Biology, Researcher at the Laboratory of Pharmacokinetics and Pharmacodynamics
Moscow
ResearcherID: AAG-6869-2019. Scopus Author ID: 57197836617
M. V. Golikova
Russian Federation
Maria V. Golikova — Ph. D. in Biology
Moscow
ResearcherID: O-7873-2016. Scopus Author ID: 56497807500
D. A. Kondratieva
Russian Federation
Daria A. Kondratieva
Moscow
A. A. Kuznetsova
Russian Federation
Anastasiya A. Kuznetsova
Moscow
References
1. Natsional'nyj standart Rossijskoj Federatsii GOST R ISO 20776-1-2022. Issledovanie chuvstvitel'nosti infektsionnykh agentov i otsenka funktsional'nykh kharakteristik izdelij dlya issledovaniya chuvstvitel'nosti k antimikrobnym sredstvam. Chast' 1. Referentnyj metod mikrorazvedenij v bul'one dlya laboratornogo issledovaniya aktivnosti antimikrobnykh agentov po otnoshenijyu k bystrorastushchim aerobnym bakteriyam, vyzyvajyushchim infektsionnye zabolevaniya. (in Russian)]
2. Baquero M., Galán J.C., del Carmen Turrientes M., Cantón R., Coque T.M., Martínez J.L., et al. Increased mutation frequencies in Escherichia coli isolates harboring extended-spectrum β-lactamases. Antimicrob Agents Chemother. 2005; 49 (11): 4754–4756. doi: 10.1128/AAC.49.11.47544756.2005.
3. Woodford N., Ellington M.J. The emergence of antibiotic resistance by mutation. Clin Microbiol Infect. 2007; 13 (1): 5–18. doi: 10.1111/j.14690691.2006.01492.x.
4. Mushtaq S., Vickers A., Ellaby N., Woodford N., Livermore D.M. Selection and characterization of mutational resistance to aztreonam/avibactam in β-lactamase-producing Enterobacterales. J Antimicrob Chemother. 2022; 77: 98–111. doi: 10.1093/jac/dkab346.
5. Zaccard C.R., Schell R.F., Spiegel C.A. Efficacy of bilateral bronchoalveolar lavage for diagnosis of ventilator-associated pneumonia. J Clin Microbiol. 2009; 47 (9): 2918–2924. doi: 10.1128/JCM.00747-09.
6. Gadsby N.J., McHugh M.P., Russell C.D., Mark H., Conway Morris A., Laurenson I.F., et al. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections. Clin Microbiol Inf. 2015; 21 (8): 788.e1788.e13. doi: 10.1016/j.cmi.2015.05.004.
7. Wang H., Gu X., Weng Y., Xu T., Fu Z., Peng W., et al. Quantitative analysis of pathogens in the lower respiratory tract of patients with chronic obstructive pulmonary disease. BMC Pulmonary Medicine. 2015; 15: 94. doi: 10.1186/s12890-015-0094-z.
8. Homma T., Hori T., Sugimori G., Yamano Y. Pharmacodynamic assessment based on mutant prevention concentrations of fluoroquinolones to prevent the emergence of resistant mutants of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2007; 51 (11): 3810–3815. doi: 10.1128/AAC.01372-06.
9. Firsov A.A., Smirnova M.V., Strukova E.N., Vostrov S.N., Portnoy Y.A., Zinner S.H. Enrichment of resistant Staphylococcus aureus at ciprofloxacin concentrations simulated within the mutant selection window: bolus versus continuous infusion. Int J Antimicrob Agents. 2008; 32: 488–493. doi: 10.1016/j.ijantimicag.2008.06.031.
10. Liang B., Bai N., Cai Y., Wang R., Drlica K., Zhao X. Mutant prevention concentration-based pharmacokinetic/pharmacodynamic indices as dosing targets for suppressing the enrichment of levofloxacin-resistant subpopulations of Staphylococcus aureus. Antimicrob Agents Chemother. 2011; 55 (5): 2409–2412. doi: 10.1128/AAC.00975-10.
11. Zhao X., Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis. 2001; 33 (Suppl 3): S147–S156. doi: 10.1086/321841.
12. Lenhard J.R., Bulman Z.P. Inoculum effect of b-lactam antibiotics. J Antimicrob Chemother. 2019; 74: 2825–2843. doi: 10.1093/jac/dkz226.
13. Golikova M.V., Strukova E.N., Alieva K.N., Ageevets V.A., Avdeeva A.A., Sulian O.S., et al. Meropenem MICs at standard and high inocula and mutant prevention concentration inter-relations: comparative study with non-carbapenemase-producing and OXA-48-, KPC- and NDMProducing Klebsiella pneumoniae. Antibiotics. 2023; 12: 872. doi: 10.3390/antibiotics12050872.
14. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0, 2023. Доступно по: http://www.eucast.org. Ссылка активна на 16.11.2023.
15. Blaser J., Stone B.B., Zinner S.H. Two compartment kinetic model with multiple artificial capillary units. J Antimicrob Chemother. 1985; 15 (Suppl A): 131–137. DOI: 10.1093/jac/15.suppl_A.131.
16. Alieva K.N., Golikova M.V., Dovzhenko S.A., Kobrin M.B., Strukova E.N., Ageevets V.A., et al. Testing the mutant selection window hypothesis with meropenem: In vitro model study with OXA-48-producing Klebsiella pneumoniae. PLoS ONE. 2023; 18 (8): e0288660. doi: 10.1371/journal.pone.0288660.
17. Lodise T.P., Smith N.M., O’Donnell N., Eakin A.E., Holden P.N., Boissonneault K.R., et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1producing Enterobacteriaceae using a hollow-fibre infection model. J Antimicrob Chemother. 2020; 75: 2622–2632. DOI: 10.1093/jac/dkaa197
18. Xu H. Zhou W., Zhou D., et al. Evaluation of aztreonam dosing regimens in patients with normal and impaired renal function: a population pharmacokinetic modeling and Monte Carlo simulation analysis. J Clin Pharmacol. 2017; 57: 336–344. doi: 10.1002/jcph.810.
19. Cies J.J., LaCoursiere R.J., Moore II W.S., Chopra A. Therapeutic drug monitoring of prolonged infusion aztreonam for multi-drug resistant Pseudomonas aeruginosa: A Case Report. J Pediatr Pharmacol Ther. 2017; 22 (6): 467–470. doi: 10.5863/1551-6776-22.6.467.
20. Feng K., Jia N., Zhu P., Sy S., Liu Y., Dong D., et al. Aztreonam/avibactam effect on pharmacodynamic indices for mutant selection of Escherichia coli and Klebsiella pneumoniae harbouring serine- and New Delhi metallo-β-lactamases. J Antimicrob Chemother. 2021; 76: 2875–2883. DOI: 10.1093/jac/dkab292.
21. Zhang J., Wu M., Diao S., Zhu S., Song C., Yue J., et al. Pharmacokinetic/pharmacodynamic evaluation of aztreonam/amoxicillin/clavulanate combination against New Delhi metallo-β-lactamase and serine-β-lactamase co-producing Escherichia coli and Klebsiella pneumoniae. Pharmaceutics. 2023; 15: 251. doi: 10.3390/pharmaceutics15010251.
22. Alieva K.N., Golikova M.V., Kuznetsova A.A., Zinner S.H. Fluorescence microscopy: determination of meropenem activity against Klebsiella pneumoniae. Antibiotics. 2023; 12: 1170. doi: 10.3390/antibiotics12071170.
23. Eng R.H.K., Cherubin C., Smith S.M., Buccini F. Inoculum effect of β-lactam antibiotics on Enterobacteriaceae. Antimicrob Agents Chemother. 1985; 28 (2): 601–606. doi: 10.1128/aac.28.5.601.
24. Cushnie TPT, O’Driscoll NH, Lamb AJ. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci. 2016; 73: 4471–4492. doi: 10.1007/s00018-0162302-2.
25. Maglio D., Ong C., Banevicius M.A., Geng Q., Nightingale C.H., Nicolau D.P. Determination of the in vivo pharmacodynamic profile of cefepime against extended-spectrum-beta-lactamase-producing Escherichia coli at various inocula. Antimicrob Agents Chemother. 2004; 48 (6): 1941–1947. doi: 10.1128/AAC.48.6.1941–1947.2004.
26. Szabó D., Máthe ́ A., Filetóth Z., Anderlik P., Rókusz L., Rozgonyi F. In vitro and in vivo activities of amikacin, cefepime, amikacin plus cefepime, and imipenem against an SHV-5 extended-spectrum β-lactamase-producing Klebsiella pneumoniae strain. Antimicrob Agents Chemother. 2001; 45 (4): 1287–1291. doi: 10.1128/aac.45.4.1287-1291.2001.
27. Mizunaga S., Kamiyama T., Fukuda Y., Takahata M., Mitsuyama J. Influence of inoculum size of Staphylococcus aureus and Pseudomonas aeruginosa on in vitro activities and in vivo efficacy of fluoroquinolones and carbapenems. J Antimicrob Chemother. 2005; 56: 91–96. doi: 10.1093/jac/dki163.
28. Lee D.-G., Murakami Y., Andes D.R., Craig W.A. Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 105 and 107 CFU injected into opposite thighs of neutropenic mice. Antimicrob Agents Chemother. 2013; 57 (3): 1434–1441. DOI: 10.1128/aac.00362-12.
29. Harada Y., Morinaga Y., Kaku N., Nakamura S., Uno N., Hasegawa H., et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect. 2014; 20: O831–O839. doi: 10.1111/1469-0691.12677.
30. Saeki M., Shinaqawa M., Yakuwa Y., Nirasawa S., Sato Y., Yanagihara N., et al. Inoculum effect of high concentrations of methicillin-susceptible Staphylococcus aureus on the efficacy of cefazolin and other betalactams. J Infect Chemother. 2018; 24 (3): 212–215. doi: 10.1016/j.jiac.2017.10.021.
31. Fantin B., Poujade J., Grégoire N., Chau F., Roujansky A., Kieffer N., et al. The inoculum effect of Escherichia coli expressing mcr-1 or not on colistin activity in a murine model of peritonitis. Clin Microbiol Inf. 2019; 25 (12): 1563.e5–1563.e8. doi: 10.1016/j.cmi.2019.08.021.
32. McNeil J.C., Sommer L.M., Boyle M., Hogan P., Vallejo J.G., Hultén K.G., et al. Cefazolin inoculum effect and methicillin-susceptible Staphylococcus aureus osteoarticular infections in children. Antimicrob Agents Chemother. 2020; 64 (9): e00703-20. doi: 10.1128/AAC.00703-20.
Review
For citations:
Alieva K.N., Golikova M.V., Kondratieva D.A., Kuznetsova A.A. Prediction of Aztreonam Effectiveness Against Klebsiella pneumoniae Based on the Results of Antimicrobial Susceptibility Testing with Increased Inoculum. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(3-4):42-50. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-3-4-42-50. EDN: FSGBXG