Preview

Антибиотики и Химиотерапия

Расширенный поиск

Нанокапсулированные системы: перспективные биомедицинские инициативы в фармакологии

https://doi.org/10.37489/0235-2990-2024-69-3-4-62-72

EDN: GNCNIG

Аннотация

Важнейшим направлением современной фармакологии является исследование систем, используемых для контролируемой и целенаправленной адресной доставки лекарственных препаратов, которое реализуется путём создания нанокапсулированных форм, имеющих различную природу и химическое строение. Нанокапсулирование — перспективный метод создания инновационных лекарственных форм с пролонгированным действием, позволяющий расширить номенклатуру лекарственных средств и изменить подходы к лечению различных заболеваний, требующих длительной терапии. В данном обзоре представлена информация, освещающая наиболее перспективные классы наноразмерных носителей лекарственных средств, описаны технологические процессы их получения на основе липидов, полимеров и биодеградируемых минеральных веществ, а также приведены примеры использования в современной фармацевтической практике.

Об авторах

Г. Н. Генатуллина
Астраханский государственный медицинский университет
Россия

Генатуллина Гузель Наилевна — к. б. н., заместитель руководителя Научно-исследовательского центра; доцент кафедры фармакогнозии, фармацевтической технологии и биотехнологии

Астрахань



А. Л. Ясенявская
Астраханский государственный медицинский университет
Россия

Ясенявская Анна Леонидовна — к. м. н., доцент, руководитель Научно-исследовательского центра; доцент кафедры фармакогнозии, фармацевтической технологии и биотехнологии

Астрахань



А. А. Цибизова
Астраханский государственный медицинский университет
Россия

Цибизова Александра Александровна — к. фарм. н., доцент кафедры фармакогнозии, фармацевтической технологии и биотехнологии

Астрахань



М. А. Самотруева
Астраханский государственный медицинский университет
Россия

Самотруева Марина Александровна — д. м. н., профессор, заведующая кафедрой фармакогнозии, фармацевтической технологии и биотехнологии

Астрахань



Список литературы

1. Sung Y.K., Kim S.W. Recent advances in polymeric drug delivery systems. Biomater Res. 2020; 24: 12. doi: https://doi.org/10.1186/s40824-020-00190-7.

2. Liao W., Badri W., Dumas E., Ghnimi S., Elaissari A., Saurel R. et al. Nanoencapsulationof essential oils as natural food antimicrobial agents: an overview. Appl Sci. 2021; 11: 5778. doi: https://doi.org/10.3390/app11135778.

3. Braz A.L., Ahmed I. Manufacturing processes for polymeric micro and nanoparticles and their biomedical applications. AIMS Bioengineering. 2017; 4 (1): 46–72. doi: https://doi.org/10.3934/bioeng.2017.1.46.

4. Поленов Ю.В., Лукин М.В. Егорова Е.В. Физико-химические основы нанотехнологий: учебное пособие. Иваново: Ивановский государственный химико-технололгический университет. 2013; 196

5. Постнов В.Н., Наумышева Е.Б., Королев Д.В., Галагудза М.М. Наноразмерные носители для доставки лекарственных препаратов. Биотехносфера. 2013; 6 (30): 16–27.

6. Narang A.S., Chang R.-K., Hussain M.A. Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems. Pharm Sci. 2013; 102 (11): 3867–3882. doi: https://doi.org/10.1002/jps.23691.

7. Prakash A., Baskaran R., Paramasivam N., Vadivel V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res. Int. 2018; 111: 509–523. doi: https://doi.org/10.1016/j.foodres.2018.05.066.

8. McClements D.J. Nanoparticle- and microparticle-based delivery systems. 1st Edition: Boca Raton; 2014. doi: https://doi.org/10.1201/b17280.

9. Dalmolin L.F., Khalil N.M., Mainardes R.M. Delivery of vanillin by poly (lactic-acid) nanoparticles: Development, characteriza-tion and in vitro evaluation of antioxidant activity. Mater. Sci. Eng. C. 2016; 62: 1–8. doi: https://doi.org/10.1016/j.msec.2016.01.031.

10. Pérez-Masiá R., López-Nicolás R., Periago M.J., Ros G., Lagaron J.M., LópezRubio A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 2015; 168: 124–133 doi: https://doi.org/10.1016/j.foodchem.2014.07.051.

11. Bejrapha P., Min, S.-G., Surassmo S., Choi M.-J. Physicothermal properties of freeze-dried fish oil nanocapsules frozen under different conditions. Dry Technol. 2010; 28: 481–489. doi: https://doi.org/10.1080/07373931003613684.

12. Chew S.-C., Nyam K.-L. Microencapsulation of kenaf seed oil by co-extrusion technology. J Food Eng. 2016; 175: 43–50. doi: 10.1016/j.jfoodeng.2015.12.002.

13. Penalva R., Esparza I., Agüeros M., Gonzalez-Navarro C.J., GonzalezFerrero C., Irache J.M. Casein nanoparticles as carriers for the oral delivery of folic acid. Food Hydrocoll. 2015; 44: 399–406. doi: https://doi.org/10.1016/j.foodhyd.2014.10.004.

14. Arroyo-Maya I.J., McClements D.J. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Res. Int. 2015; 69: 1–8. doi: https://doi.org/10.1016/j.foodres.2014.12.005.

15. Blanco-Padilla A., Soto K.M., Hernández Iturriaga M., Mendoza S. Food antimicrobials nanocarriers. ScitificWorldJournal. 2014; 2014: 837215. doi: 10.1155/2014/837215.

16. Shishir M.R.I., Xie L., Sun C., Zheng X., Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol. 2018,78, 34–60. doi: https://doi.org/10.1016/j.tifs.2018.05.018.

17. Jia Z., Dumont M.-J., Orsat V. Encapsulation of phenolic compounds present in plants using protein matrices. Food Biosci. 2016; 15: 87–104.

18. Saberi A.H., Fang Y., McClements D.J. Influence of surfactant type and thermal cycling on formation and stability of flavor oil emulsions fabricated by spontaneous emulsification. Food Res. Int. 2016; 89: 296–301. doi: https://doi.org/10.1016/j.fbio.2016.05.007.

19. Dasgupta N., Ranjan S., Mundra S., Ramalingam C., Kumar A. Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int. J. Food Prop. 2016,19: 700–708. doi: https://doi.org/10.1080/10942912.2015.1042587.

20. Asbahani A. El., Miladi K., Badri W., Sala M., Addi E.A., Casabianca H. et al. Essential oils: From extraction to encapsulation. Int J Pharm. 2015; 483: 220–243. doi: 10.1016/j.ijpharm.2014.12.069.

21. Бочков П.О., Колыванов Г.Б., Литвин А.А., Жердев В.П., Шевченко Р.В. Влияние высокомолекулярных вспомогательных веществ на оптимизацию фармакокинетических свойств лекарственных препаратов. Фармакокинетика и фармакодинамика. 2016. №1. С. 3–11.

22. Lee M.-Y., Min, S.-G., You S.-K., Choi M.-J., Hong G.-P., Chun J.-Y. Effect of β-cyclodextrin on physical properties of nanocapsules manufactured by emulsion-diffusion method. J. Food Eng. 2013; 119: 588–594. https://doi.org/10.1016/j.jfoodeng.2013.06.018

23. Kurkov S.V., Madden D.E., Carr D., Loftsson T. The effect of parenterally administered cyclodextrins on the pharmacokinetics of coadministered drugs. J. Pharm. Sci. 2012; 101: 12: 4402–4408. https://doi.org/10.1002/jps.23329

24. Tserennadmid R., Takó M., Galgóczy L., Papp T., Pesti M., Vágvölgyi C., et al. Anti-yeast activities of some essential oils in growth medium, fruit juices and milk. Int. J. Food Microbiol. 2011; 144: 480–486. https://doi.org/10.1016/j.ijfoodmicro.2010.11.004

25. Киржанова Е.А. Печенкин М.А., Демина Н.Б., Балабушевич Н.Г. Микро-и наночастицы из альгината и хитозана для трансмукозальной доставки бека // Вестник Московского университета. Серия 2. Химия. 2016; 57 (2): 103–111. doi: https://doi.org/10.3103/s002713141602005x.

26. Rezagholizade-shirvan A., Masrournia M., Fathi Najafi M., Behmadi H. Synthesis and characterization of nanoparticles based on chitosan-biopolymers systems as nanocarrier agents for curcumin: study on pharmaceutical and environmental applications. Polym. Bull. 2023; 80: 1495–1517. https://doi.org/10.1007/s00289-022-04095-4.

27. Sosnik B.A. Alginate particulate gels for oral drug delivery. In: Azevedo H.S., Mano J.F., Borges J., editors. Soft Matter for Biomedical Applications: Ebook collection; 2021. https://doi.org/10.1039/9781839161124-00155.

28. Mohammadi A., Hashemi M., Hosseini S.M. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 2015; 28: 73–80. https://doi.org/10.1016/j.ifset.2014.12.011

29. Ghaderi-Ghahfarokhi M., Barzegar M., Sahari M.A., Azizi M.H. Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food Bioprocess Technol. 2016; 9: 1187–1201. https://doi.org/10.1007/s11947-016-1708-z

30. Cerqueira M.A., Pinheiro A.C., Ramos O.L., Silva H., Bourbon A.I. Vicente A.A. Chapter two — advances in food nanotechnology. In: Emerging Nanotechnologies in Food Science: Micro and Nano Technologies; 2017, p. 11–38. https://doi.org/10.1016/B978-0-323-42980-1.00002-9.

31. Куликовская В.И., Парибок И.В., Пинчук С.В., Красковский А.Н., Василевич И.Б., Матиевский К.А. и др. Плёнки полидиметилсилоксана, модифицированные мультислоями хитозан/пектин, – носители мезенхимальных стволовых клеток. Прикладная биохимия и микробиология. 2018; 54 (5): 465–471. doi: https://doi.org/10.1134/S0555109918050100.

32. Fathi M., Donsi F., McClements D.J. Protein-based delivery systems for the nanoencapsulation of food ingredients. Food Science. 2018; 17 (4): 920–936. doi: 10.1111/1541-4337.12360.

33. Pang S.C., Chin S.F., Nadirah A., Tay S.H., Yazid S.N.A.M. Fabrication of polysaccharide-based nanoparticles as drug delivery nanocarriers. M02Nano-Micro Sensors and Systems in Healthcare and Environmental Monitoring. Meet. Abstracts: 2015; MA2015-01: 2100. doi: https://doi.org/10.1149/MA2015-01/40/2100.

34. Zhang Y., Chen H., Pan K. Chapter 5-Nanoencapsulation of food antimicrobial agents and essential oils. in nanoencapsulation of food bioactive ingredients. S.M.Jafari (ed.). Academic Press: Cambridge, MA, USA, 2017; 183–221. doi: https://doi.org/10.1016/b978-0-12-8097403.00005-2.

35. Narayanan S., Pavithran M., Viswanath A., Narayanan D., Mohan C.C., Manzoor K., Menon D. Sequentially releasing dual-drug-loaded PLGA– casein core/shell nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater. 2014; 10: 2112–2124. doi: 10.1016/j.actbio.2013.12.041

36. Dai Y., Ren T., Wang Y., Zhang X. Polyion complex micelles to stabilize gold nanoparticles for catalytic reduction of 4-nitrophenol. Gold Bulletin. 2018; 51: 21–26. doi: https://doi.org/10.1007/s13404-017-0225-9.

37. Singh A., Bajpai J., Bajpai A.K. Investigation of magnetically controlled water intake behavior of iron oxide impregnated superparamagnetic casein nanoparticles (IOICNPs). Nanobiotechnology. 2014; 38: 1–12. doi: 10.1186/s12951-014-0038-4.

38. Kim S., Peterson S.C. Optimal conditions for the encapsulation of menthol into zein nanoparticles. LWT. 2021; 144: 111213. doi: https://doi.org/10.1016/j.lwt.2021.111213.

39. Li Q., Zhao Z. Interaction between lactoferrin and whey proteins and its influence on the heat-induced gelation of whey proteins. Food Chem. 2018; 252: 92–98. doi: 10.1016/j.foodchem.2018.01.114.

40. Ghasemi S., Jafari S.M., Assadpour E., Khomeiri M. Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydr Polym. 2017,177, 369–377. doi: 10.1016/j.carbpol.2017.09.009.

41. Hosseini S.M.H., Emam-Djomeh Z., Sabatino P., Van der Meeren P. Nanocomplexes arising from protein-polysaccharide electrostatic interaction as a promising carrier for nutraceutical compounds. Food Hydrocoll. 2015; 50: 16–26. doi: https://doi.org/10.1016/j.foodhyd.2015.04.006.

42. Elahi N., Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: a review. Artif Organs. 2021; 45 (11): 1272–1299. doi: 10.1111/aor.14027.

43. Esfahani R., Jafari S.M., Jafarpour A., Dehnad D. Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation. Food Hydrocoll. 2019; 90: 291–298. doi: https://doi.org/10.1016/j.foodhyd. 2018.12.044.

44. Fathi M. Mozafari M.-R., Mohebbi M. Nanoencapsulation of food ingredients using lipid-based delivery systems. Trends Food Sci. Technol. 2012; 23: 13–27. doi: https://doi.org/10.1016/j.tifs.2011.08.003.

45. Azmi N.A.N., Elgharbawy A.A.M., Motlagh S.R, Samsudin N., Salleh H.M. Nanoemulsions: factory for food, pharmaceutical and cosmetics. Processes. 2019; 7 (9): 617. doi: https://doi.org/10.3390/pr7090617.

46. Попова Е.В., Бельтюков П.П., Радилов А.С. Современные тенденции в разработке и производстве наноразмерных систем для доставки лекарственных соединений. Научно-технический вестник информационных технологий, механики и оптики. 2020; 20 (2): 206–222. doi: https://doi.org/10.17586/2226-1494-2020-20-2-206-222.

47. Koroleva M.Y., Nagovitsina T.N., Yurtov E.V. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Phys Chem Chem Phys. 2018; 20: 10369–10377. doi: 10.1039/C7CP07626F.

48. Алексеев К.В., Кедик С.А. Фармацевтическая технология: учебник. М.: АО ИФТ; 2019; 570.

49. Nirmal N.P., Mereddy R., Li L., Sultanbawa Y. Formulation, characterisation and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chem. 2018; 254: 1–7. doi: 10.1016/j.foodchem.2018.01.173.

50. Silva H.D., Cerqueira M.Â., Vicente A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol. 2012; 5: 854–867. https://doi.org/10.1007/s11947-011-0683-7.

51. Chang Y., McLandsborough L., McClements D.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chemistry. 2015; 72: 298–304. doi: https://doi.org/10.1016/j.foodchem.2014.09.081.

52. Алексеев К.В., Кедик С.А., Блынская Е.В. Фармацевтическая нанотехнология: учебное пособие. 2-е изд. М.: АО ИФТ, 2016; 544.

53. Yukuyama M.N., Ghisleni D.D.M., Pinto T.J.A., Bou-Chacra N.A. Nanoemulsion: process selection and application in cosmetics — a review. Int J Cosmet Sci. 2016; 38 (1): 13–24. doi: 10.1111/ics.12260.

54. Afzal S.M., Shareef M.Z., Kishan V. Transferrin tagged lipid nanoemulsion of docetaxel for enhanced tumor targeting. Journal of Drug Delivery Science and Technology. 2016; 36: 175–182. doi: https://doi.org/10.1016/j.jddst.2016.10.008.

55. Hashtjin A.M., Abbasi S. Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocoll. 2015; 44: 40–48. doi: https://doi.org/10.1016/j.foodhyd.2014.08.017.

56. Khan W., Hussain Z., Siddique N.F. Nanoemulsion: a way to enhance bioavailability. World Journal of Pharmaceutical Research. 2018; 7 (2): 522–531. doi: https://doi.org/10.20959/wjpr20182-10807.

57. Hörmann K., Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions — a review. J Control Release. 2016; 223: 85–98. doi: 10.1016/j.jconrel.2015.12.016.

58. Patel N.R., Piroyan A., Ganta S., Morse A.B., Candiloro K.M., Solon A.L. et al. In vitro and in vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers. Cancer Biol Ther. 2018; 19 (7): 554–564. doi: 10.1080/15384047.2017.1395118.

59. Fofaria N.M., Quattal H.S.S., Liu X., Srivastava S.K. Nanoemulsion formulations for anti-cancer agent piplartine — Characterization, toxicological, pharmacokinetics and efficacy studies. Internat J Pharm. 2016; 498 (1–2): 12–22. doi: 10.1016/j.ijpharm.2015.11.045.

60. Urquhart A.J., Eriksen A.Z. Recent developments in liposomal drug delivery systems for the treatment of retinal diseases. Drug Discov Today. 2019; 24 (8): 1660–1668. doi: 10.1016/j.drudis.2019.04.004.

61. Zhang L., Pornpattananangkul D., Hu C.-M., Huang C.-M. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010; 17: 585–594. doi: 10.2174/092986710790416290.

62. Zylberberg C., Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016; 23 (9): 3319–3329. doi: 10.1080/10717544.2016.1177136.

63. Milani D., Athiyah U., Hariyadi D.M., Pathak Y.V. Surface Modifications of Liposomes for Drug Targeting. Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer. 2019: 207220. doi: https://doi.org/10.1007/978-3-030-06115-9_11.

64. Amiri S., Ghanbarzadeh B., Hamishehkar H., Hosein M., Babazadeh A., Adun P. Vitamin E loaded nanoliposomes: effects of gammaoryzanol, polyethylene glycol and lauric acid on physicochemical properties. Colloid and Interface Science Communications. 2018; 26: 1–6. doi: https://doi.org/10.1016/j.colcom.2018.07.003.

65. Furuhashi H., Tomita K., Teratani T., Shimizu M., Nishikawa M., Higashiyama M. et al. Vitamin A-coupled liposome system targeting free cholesterol accumulation in hepatic stellate cells offers a beneficial therapeutic strategy for liver fibrosis. Hepatol Res. 2018; 48 (5): 397–407. doi: 10.1111/hepr.13040.

66. Madni A., Sarfraz M., Rehman M., Ahmad M., Akhtar N., Ahmad S. et al. Liposomal drug delivery: A versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014; 17 (3): 401–426. doi: 10.18433/J3CP55.

67. Gabizon A., Shmeeda H., Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin Pharmacokinet. 2003; 42 (5): 419–436. doi: 10.2165/00003088-20034205000002.

68. Grüll H., Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release. 2012; 161 (2): 317–327. doi: 10.1016/j.jconrel.2012.04.041.

69. Salkho N.M., Awad N.S., Pitt W.G., Husseini G.A. Photo-induced drug release from polymeric micelles and liposomes: Phototriggering mechanisms in drug delivery systems. Polymers (Basel). 2022; 14 (7): 1286. doi: 10.3390/polym14071286.

70. Askari A., Tajvar S., Nikkhah M., Mohammadi S., Hosseinkhani S. Synthesis, characterization and in vitro toxicity evaluation of doxorubicin-loaded magnetoliposomes on MCF-7 breast cancer cell line. Journal of Drug Delivery Science and Technology. 2020; 55: 101447. https://doi.org/10.1016/j.jddst.2019.101447.

71. Mehrarya M., Gharehchelou B., Kabarkouhi Z., Ataei S., Esfahani F.N., Wintrasiri M.N. et al. Functionalized nanostructured bioactive carriers: nanoliposomes, quantum dots, tocosome, and theranostic approach. Curr Drug Deliv. 2022; 20 (12): 1001–1011. doi: 10.2174/15672018196662 20324092933.

72. Neyestani M., Shariatifar N. Food ingrdient encapsulation using nanoliposome technology: a review study. Journal of Food Safety and Hygiene. 2021. doi: https://doi.org/10.18502/jfsh.v5i4.5697.

73. Donsì F., Annunziata M., Sessa M., Ferrari G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT Food Sci. Technol. 2011; 44: 1908–1914. doi: https://doi.org/10.1016/j.lwt.2011.03.003.

74. Bai C., Peng H., Xiong H., Liu Y., Zhao L., Xiao X. Carboxymethylchitosan-coated proliposomes containing coix seed oil: сharacterisation, stability and in vitro release evaluation. Food Chem. 2011; 129: 1695–1702. doi: https://doi.org/10.1016/j.foodchem.2011.06.033.

75. Guan P., Lu Y., Qi J., Niu M., Lian R., Wu W. Solidification of liposomes by freeze-drying: The importance of incorporating gelatin as interior support on enhanced physical stability. Int J Pharm. 2015; 478: 655–664. doi: 10.1016/j.ijpharm.2014.12.016.

76. Neumann K., Lilienkampf A., Bradley M. Responsive polymeric nanoparticles for controlled drug delivery. Polymer International 2017; 66 (12): 1756–1764. doi: https://doi.org/10.1002/pi.5471.

77. Nasseri M., Arouiee H., Golmohammadzadeh S., Jaafari M.R., Neamati H. Antifungal Effects of Zataria multiflora Essential Oil on the Inhibitory Growth of some Postharvest Pathogenic Fungi. Notulae Scientia Biologicae. 2015; 7 (4): 12–13. doi: https://doi.org/10.15835/nsb749650.

78. Jourghanian P., Ghaffari S., Ardjmand M., Haghighat S., Mohammadnejad M. Sustained release curcumin loaded solid lipid nanoparticles. Adv Pharm Bull. 2016; 6: 17. doi: 10.15171/apb.2016.04.

79. Прищепенко Д.В., Прокопчук Н.Р., Шашок Ж.С. Влияние технологических параметров электроформования на морфологию и плотность нанесения нановолокон хитозана. Труды БГТУ. 2016; 4: 114–120.

80. Cheng Z.-L., Qin. X.-X., Liu Z., Qin D.-Z. Electrospinning preparation and mechanical properties of PVA/HNTs composite nanofibers. Polym Adv. 2016; 28 (6): 768–774. doi: https://doi.org/10.1002/pat.3975.

81. Хоменко А.Ю. Регулирование морфологии и свойств нетканых и высокодисперсных биосовместимых материалов на основе хитозана и полимеров молочной кислоты, полученных методом электроформования. Дис. … канд. ф-мат. наук М.: 2016. Доступно по: http: //nrcki.ru/files/pdf/1461589130.pdf?ysclid=lvdod5qhjn989054638. Ссылка активна на 12.12.2023.

82. Heunis T.D.J., Botes M., Dicks L.M.T. Encapsulation of Lactobacillus plantarum 423 and its Bacteriocin in Nanofibers. Probiotics Antimicrob Proteins 2010; 2: 46–51. doi: 10.1007/s12602-009-9024-9.

83. Ghayempour S., Mortazavi S. Antibacterial activity of peppermint fragrance micro–nanocapsules prepared with a new electro-spraying method. J Essent Oil Res. 2014; 26: 492–498. https://doi.org/10.1080/10412905.2014.949882

84. Zinovyev S.V., Saprikina N.S., Kargina J.V., Le-Deygen I.M., Sviridov A.P., Bazylenko T.Yu. et al. In-vivo studies of ultrasound-activated drugloaded porous silicon nanoparticles for cancer therapy application. KnE Energy. 2018; 3 (2): 556–562. doi: https://doi.org/10.18502/ken.v3i2.1865.

85. Osminkina L.A., Tamarov K.P., Sviridov A.P., Galkin R.A., Gongalsky M.B., Solovyev V.V. et al. Photoluminescent biocompatible silicon nanoparticles for cancer theranostic application. J Biophotonics. 2012; 5 (7): 529–535. doi: 10.1002/jbio.201100112.

86. Tamarov K.P., Osminkina L.A., Zinovyev S.V., Maximova K.A., Kargina J.V., Gongalsky M.B. et al. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci Rep. 2014; 4: 7034. doi: 10.1038/srep07034.

87. Santos H.A., Riikonen J., Salonen J., Makila E., Heikkila T., Laaksonen T., In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010; 6; 2721. doi: 10.1016/j.actbio.2009.12.043.

88. Kilpelainen M., Monkare J., Riikonen J., Vlasova M., Salonen J., Lehto V.P. et al. Mesoporous silicon microparticles as carriers for peptides. J Control Release. 2010; 148 (1): e43–e44. doi: 10.1016/j.jconrel.2010.07.050.

89. Xu W., Riikonen J., Lehto V.P. Mesoporous systems for poorly soluble drugs. Int J Pharm. 2013; 453 (1): 181–197. doi: 10.1016/j.ijpharm.2012.09.008.

90. Yildirimer L., Thanhb N.T.K., Loizidoua M., Seifalian A.M. Toxicology and clinical potential of nanoparticles. Nano Today 2011; 6 (6): 585–607. doi: 10.1016/j.nantod.2011.10.001.

91. Polkovnikova Yu.A., Lenshin A.S., Seredin P.V., Minakov D.A. Porous silicon nanoparticles containing neurotropic drugs. Inorganic Materials. 2017; 53: 477–483. doi: https://doi.org/10.1134/s0020168517050156.

92. Sviridov A.P., Osminkina L.A., Kharin A.Yu., Gongansky M.B., Kargina J.V., Kudryavtsev A.A et al. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology. 2017; 28 (10): 105102. doi: 10.1088/13616528/aa5b7c.

93. Konoplyannikov M.A., Eremina A.S., Kargina Yu.V., Le-Deygen I.M., Kharin A.Yu., Bazylenko T.Yu. et al. Mesoporous silicon nanoparticles loaded with salinomycin for cancer therapy applications. Microporous and Mesoporous Materials. 2021; 328, 111473. doi: https://doi.org/10.1016/j.micromeso.

94. Патент РФ на изобретение № 2722745/ 03.06. 2020. Тимошенко В.Ю., Коноплянников М.А., Ле-Дейген И.М., Фесенко И.К., Базыленко Т.Ю., Каргина Ю.В. и др. Способ получения наноконтейнеров для химиотерапевтических противоопухолевых препаратов. https://pubchem.ncbi.nlm.nih.gov/patent/RU-2722745-C1.

95. Zhang D.-X., Esser L., Vasani R.B., Thissen H., Voelcker N.H. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine. 2019; 14 (24): 32135(7)3230. doi: 10.2217/nnm-2019-0167.

96. Eremina A.S., Kargina Y.V., Kharin A.Y., Petukhov D.I., Timoshenko V.Yu. Mesoporous silicon nanoparticles covered with PEG molecules by mechanical grinding in aqueous suspensions. Microporous and Mesoporous Materials. 2022; 331: 111641. doi: https://doi.org/10.1016/j.micromeso.2021.111641.


Рецензия

Для цитирования:


Генатуллина Г.Н., Ясенявская А.Л., Цибизова А.А., Самотруева М.А. Нанокапсулированные системы: перспективные биомедицинские инициативы в фармакологии. Антибиотики и Химиотерапия. 2024;69(3-4):62-72. https://doi.org/10.37489/0235-2990-2024-69-3-4-62-72. EDN: GNCNIG

For citation:


Genatullina G.N., Yasenyavskaya A.L., Tsibizova A.A., Samotrueva M.A. Nanoencapsulated Systems: Promising Biomedical Initiatives in Pharmacology. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(3-4):62-72. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-3-4-62-72. EDN: GNCNIG

Просмотров: 396


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)