Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Evaluation of Antibacterial Properties of Carbon Sorbents

https://doi.org/10.37489/0235-2990-2024-69-5-6-4-10

Abstract

Background. Currently, the scientific search for alternative materials and methods for combating pathogens of infectious diseases is an important area of research. Carbon materials are one of the promising types of materials exhibiting antimicrobial and antifungal properties. The aim of the study is to investigate the antibacterial properties of modified carbon sorbents and initial modifiers in relation to some types of pathogenic microorganisms. The objects of the study were carbon sorbent samples before and after modification with biologically active substances with antibacterial properties: salicylic acid, sulfosalicylic acid, tributyrin. The samples of carbon sorbents under study were obtained at the Center of New Chem- ical Technologies BIC. The following strains of gram-positive and gram-negative bacteria were used as experimental models: Staphylococcus aureus АТСС 25923; Pseudomonas aeruginosa АТСС 27853; Klebsiella pneumoniae 418; Esherichia coli АТСС 25922. Results. The highest sensitivity of gram-positive and gram-negative bacteria was established for a carbon sor- bent modified with tributyrin. The absence of growth of the studied test strains of microorganisms was observed after 2 hours of incubation of the «sample-microorganism» mixture.

About the Authors

L G. Pyanova
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (Omsk Branch)
Russian Federation

Lidia G. Pyanova — D. Sc. in Biology, Associate Professor, Leading Researcher at the Department of Materials Science and Physical and Chemical Research Methods

Omsk

Author ID: 417502



V. T. Dolgikh
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Vladimir T. Dolgikh — D. Sc. in Medicine, Professor, Honored Scientist of the Russian Federation, Chief Researcher of the Research Institute of General Reanimatology named after V. A. Negovsky

Moscow

Author ID: 540900

 



A. V. Sedanova
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (Omsk Branch)
Russian Federation

Anna V. Sedanova — Ph. D. in Chemistry, senior researcher at the Department of Materials Science and Physical and Chemical Research Methods

Omsk

Author ID: 624733

 



M. S. Delyagina
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (Omsk Branch)
Russian Federation

Maria S. Delyagina — Ph. D. in Chemistry, researcher at the Department of Materials Science and Physical and Chemical Research Methods

Omsk

Author ID: 740476

 



N. V. Kornienko
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (Omsk Branch)
Russian Federation

Natalya V. Kornienko — Junior Researcher at the Department of Materials Science and Physical and Chemical Research Methods

Omsk

Author ID: 741459

 



E. V. Naumkina
Omsk State Medical University of the Ministry of Health of the Russian Federation; City Clinical Perinatal Center
Russian Federation

Elena V. Naumkina — D. Sc. in Medicine, Professor of the Department of Microbiology; Head of the Bacteriological Laboratory

Omsk

Author ID: 753166

 



A. V. Lavrenov
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (Omsk Branch)
Russian Federation

Alexander V. Lavrenov — D. Sc. in Chemistry, Associate Professor, Director

Omsk

Author ID: 363779

 



A. V. Dubrovskaya
Omsk State Medical University of the Ministry of Health of the Russian Federation; City Clinical Perinatal Center
Russian Federation

Alena V. Dubrovskaya — Assistant at the Department of Microbiology; bacteriologist

Omsk

 



References

1. Jadimurthy R., S. B. Mayegowda, Nayak S.C. et al. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol Rep (Amst). 2022; 34: e00728. doi: 10.1016/j.btre.2022.e00728.

2. Ríos-Lopez A. L., Gonzalez G. M., Hernandez-Bello R., Sanchez-Gonzalez A. Avoiding the trap: Mechanisms developed by pathogens to escape neutrophil extracellular traps. Microbiol Res. 2021; 243: 126644. doi: 10.1016/j.micres.2020.126644.

3. Yackubtsevich R., Serhiyenka U., Khmialenka A. et al. Results of the impact of antiproteinase hemosorbent on the dynamics of the main markers of inflammation in children with severe forms of peritonitis. Emergency medical service. 2022; 9 (2): 85–93. https://doi.org/ 10.36740/EmeMS202202103.

4. Pavlova L. A., Pastukhov A. V., Kopitsyna M. N. et al. Increasing selective bilirubin removal by hypercross-linked polystyrene hemosorbents. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 2017; 66 (10): 1891–1896. doi: https://doi.org/10.1007/s11172017-1963-9.

5. Chrzanowska A., Nosach L.V., Voronin E.F. et al. Effect of geometric modification of fumed nanoscale silica for medical applications on adsorption of human serum albumin: Physicochemical and surface properties. Int J Biol Macromol. 2022; 220: 1294–1308. doi: 10.1016/j.ijbiomac.2022.08.183.

6. Barinov S.V., Di Renzo G. C., Tsibizova V. I., Shifman E. М. et al. Detoxification Treatment In Gynecology Using A Modified Molded Sorbent // Best Pract Res Clin Obstet Gynaecology. 2023; 102346. doi: 10.1016/j.bpobgyn.2023.102346.

7. Díez-Pascual A. M. State of the art in the antibacterial and antiviral applications of carbon-based polymeric nanocomposites. Int J Mol Sci. 2021; 22 (19): 10511–10539. doi: 10.3390/ijms221910511.

8. Li H., He X., Jin B. et al. Synthesis, modification strategies and applications of coal-based carbon materials. Fuel Process. Technol. 2022; 230: 107203–107221. doi: https://doi.org/10.1016/j.fuproc.2022.107203.

9. Amani H., Arzaghi H., Bayandori M. et al. Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv. Mater. Interfaces. 2019; 6: 1900572-1900602. doi: https://doi.org/10.1002/admi.201900572.

10. Ekinci D., Şentürk M., Kfrevioǧlu Ö. I. Salicylic acid derivatives: Synthesis, features and usage as therapeutic tools. Expert Opinion on Therapeutic Patents. 2011; 21: 1831–1841. doi: https://doi.org/10.1517/13543776.2011. 636354.

11. Kiyashev D. K. Antimicrobial activity of composite alcoholic solutions and their components Vestnik Kazahskogo nacional'nogo medicinskogo universiteta. 2014; 4: 293–301. (in Russian)

12. Ozsoy M., Atiroglu V., Eskiler G. G. et al. A protein-sulfosalicylic acid/boswellic acids @metal–organic framework nanocomposite as anticancer drug delivery system. Colloids Surf. B: Biointerfaces. 2021; 204: 111788. doi: https://doi.org/10.1016/j.colsurfb.2021.111788.

13. Koksharova T., Slyvka Y., Savchenko O. et al. 5-Sulfosalicylato Cu(II), Zn(II) and Ni(II) coordination compounds with benzohydrazide: Synthesis, structure and luminescent properties. J. Mol. Struct. 2022; 1271 (2): 133980. doi: https://doi.org/10.1016/j.molstruc.2022.133980.

14. Wächtershäuser A., Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000; 39 (4): 164–171. doi: 10.1007/s00394 0070020.

15. Kovanda L., Zhang W., Wei X. et al. In vitro antimicrobial activities of organic acids and their derivatives on several species of gram-negative and gram-positive bacteria. Molecules. 2019; 24: 3770. doi: 10.3390/molecules24203770.

16. Kang S. N, Lee E., Lee M. K., Lim S. J. Preparation and evaluation of tributyrin emulsion as a potent anti-cancer agent against melanoma. Drug Deliv. 2011. 18: 143–149. doi 10.3109/10717544.2010.522610.

17. Safronov S. P. Ester plasticizing compositions from renewable vegetable raw materials, Thesis for Cand. Sci. in Chemistry. Samara. 2016: 112. https://www.dissercat.com/content/slozhnoefirnye-plastifitsiruyushchie-kompozitsii-iz-vozobnovlyaemogo-rastitelnogo-syrya (in Russian)

18. Sedanova A. V., Kornienko N. V., Delyagina M. S. et al. Study of adsorption of salicylic acid on carbon mesoporous sorbent. V sbornike: Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva : materialy 12-j Mezhdunarodnoj nauchno-tekhnicheskoj konferencii, Rossiya, Omsk, 16–19 fevralya 2022 goda. Izdatel'stvo OmGTU. 2022: 12–13. (in Russian)

19. P’yanova L. G., Lavrenov A. V., Leont’eva N. N. et al. Physicochemical and biospecific properties of the sorbent obtained on the basis of nanoglobular carbon and sulfosalicylic acid. V sbornike: Aktual'nye fiziko-himicheskie problemy adsorbcii i sinteza nanoporistyh materialov: Sbornik trudov Vserossijskogo simpoziuma s mezhdunarodnym uchastiem, posvyashchennogo pamyati V.A. Avramenko, 17–21 oktyabrya, 2022, Moskva, IFHE RAN. IFHE RAN. 2022: 33. (in Russian)

20. Sedanova A. V., P’yanova L. G., Delyagina M. S. et al. Modification of porous carbon sorbent with tributyrin. Chem. for Sust. Develop. 2022; 30: 522–531. doi: https://doi.org/10.15372/CSD2022412.

21. Cueva C., Moreno-Arribas M.V., Martín-álvarez P.J. et al. Antimicrobial Activity of Phenolic Acids against Commensal, Probiotic and Pathogenic Bacteria. Research in Microbiology. 2010; 161: 372–382. Res Microbiol. doi: 10.1016/j.resmic.2010.04.006.


Review

For citations:


Pyanova L.G., Dolgikh V.T., Sedanova A.V., Delyagina M.S., Kornienko N.V., Naumkina E.V., Lavrenov A.V., Dubrovskaya A.V. Evaluation of Antibacterial Properties of Carbon Sorbents. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(5-6):4-10. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-5-6-4-10

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)