A Panel of Cultures of Cancer and Normal Lung Cells with a Characterized Expression of PD-L1 to Search and Development of the Target Modifiers of Immunotherapy
https://doi.org/10.37489/0235-2990-2024-69-7-8-25-29
Abstract
Background. The search for effective combinations of immune checkpoint inhibitors with common cytostatics, targeted cancer drugs and other treatments is a modern trend to improve the effectiveness of immunotherapy.
Purpose. Development of a panel of lung cancer cell cultures and cells of normal lung tissue with a characterized molecular phenotype by expression of one of the targets of immunotherapy — programmed cell death ligand 1 (PD-L1).
Methods. PD-L1 expression was quantitatively analyzed by immunofluorescence method associated with flow cytometry.
Results. A panel of lung cancer cell cultures of different histotypes and cells of normal lung tissue with characterized molecular phenotype was formed according to the expression of the immunotherapy target PD-L1. In terms of PD-L1 expression intensity, cell cultures can be arranged in a series: Calu-1 HFL-1 Calu-6 Wi-26 A-549 H-596 H-211, with a 7-fold difference in the index between Calu-1 and H-211.
Conclusion. The panel of cultures of cancer and normal lung cells is recommended for the search and development of effective modifiers of the immunotherapy target PD-L1.
About the Authors
T. A. BogushRussian Federation
Tatiana A. Bogush — D. Sc. in Biology, Professor, Head of the Molecular Tumor Prognosis Group of the Laboratory of Molecular Genetic Diagnostics and Personalized Medicine
ResearcherID: A-6522-2013
Scopus Author ID: 7006161773
Moscow
Competing Interests:
Авторы сообщают об отсутствии конфликта интересов.
A. N. Grishanina
Russian Federation
Anna N. Grishanina — Researcher of the Molecular Tumor Prognosis Group of the Laboratory of Molecular Genetic Diagnostics and Personalized Medicine
ResearcherID: R-9450-2019
Scopus Author ID: 6506498692
Moscow
Competing Interests:
Авторы сообщают об отсутствии конфликта интересов.
A. M. Scherbakov
Russian Federation
Alexander M. Scherbakov — Ph. D. in Biology, Acting Head of the Oncoproteomics Laboratory of the Department of Experimental Tumor Biology
ResearcherID: F-4914-2013
Scopus Author ID: 7003636718
Moscow
Competing Interests:
Авторы сообщают об отсутствии конфликта интересов.
D. A. Khochenkov
Russian Federation
Dmitry A. Khochenkov — Ph. D. in Biology, Head of the Laboratory of Biomarkers and Mechanisms of Tumour Angiogenesis
ResearcherID: N-4137-2019
Scopus Author ID: 25930436100
Moscow
Competing Interests:
Авторы сообщают об отсутствии конфликта интересов.
R. Yu. Yunusova
Russian Federation
Raisat Yu. Yunusova — Senior researcher of the Molecular Tumor Prognosis Group of the Laboratory of Molecular Genetic Diagnostics and Personalized Medicine
Scopus Author ID: 36082031800
Moscow
Competing Interests:
Авторы сообщают об отсутствии конфликта интересов.
S. A. Kalyuzhny
Russian Federation
Sergey A. Kalyuzhny — Junior researcher of the Molecular Tumor Prognosis Group of the Laboratory of Molecular Genetic Diagnostics and Personalized Medicine
ResearcherID: K-8488-2018
Scopus Author ID: 57193509054
Moscow
Competing Interests:
Авторы сообщают об отсутствии конфликта интересов.
V. S. Kosorukov
Russian Federation
Vyacheslav S. Kosorukov — Ph. D. in Biology, Director of the Research Institute for Experimental Diagnosis and Therapy of Tumors
ResearcherID: A-3901-2014
Scopus Author ID: 6505962801
Moscow
Competing Interests:
Авторы сообщают об отсутствии конфликта интересов.
References
1. Benelli N.D., Brandon I., Hew K.E. Immune checkpoint inhibitors: narrative review on PD-1/PD-L1 blockade mechanism, efficacy, and safety profile in treating malignancy. Cureus. 2024; 16 (4): e58138. doi: 10.7759/cureus.58138.
2. Pons-Tostivint E., Latouche A., Vaflard P. et al. Comparative analysis of durable responses on immune checkpoint inhibitors versus other systemic therapies: a pooled analysis of phase III trials. JCO Precis Oncol. 2019; 3: 1–10. doi: 10.1200/PO.18.00114.
3. Haslam A., Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019; 2 (5): e192535. doi: 10.1001/jamanetworkopen.2019.2535.
4. Heinhuis K.M., Ros W., Kok M. et al. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol. 2019; 30: 219–235. doi: 10.1093/annonc/mdy551.
5. Melosky B., Juergens R., Hirsh V. et al. Amplifying outcomes: checkpoint inhibitor combinations in first-line non-small cell lung cancer. Oncologist. 2020; 25 (1): 64–77. doi: 10.1634/theoncologist.2019-0027.
6. Igata F., Inoue H., Ikeda T. et al. Comparison of real-world efficacy and safety of atezolizumab and durvalumab in combination with chemotherapy for first-line treatment of extensive-stage small-cell lung cancer. Anticancer Res. 2024; 44 (7): 3175–3183. doi: 10.21873/anticanres.17132.
7. Bogush T.A., Basharina A.A., Eliseeva B.K. et al. A new approach to epithelial-mesenchymal transition diagnostics in epithelial tumors: double immunofluorescent staining and flow cytometry. Biotechniques. 2020; 69 (4): 257–263. doi: 10.2144/btn-2020-0024.
8. Bogush T.A., Basharina A.A., Bogush E.A. et al. The expression and clinical significance of ERβ/ERα in ovarian cancer: can we predict the effectiveness of platinum plus taxane therapy? Ir J MedSci. 2022; 191 (5): 2047–2053. doi: 10.1007/s11845-021-02842-6.
9. Jannin A., Penel N., Ladsous M. et al. Tyrosine kinase inhibitors and immune checkpoint inhibitors-induced thyroid disorders. Crit Rev Оncol Hematol. 2019; 141: 23–35. doi: 10.1016/j.critrevonc.2019.05.015.
10. Rassy E., Flippot R., Albiges L. Tyrosine kinase inhibitors and immunotherapy combinations in renal cell carcinoma. Ther Adv Med Oncol. 2020; 12: 1758835920907504. doi: 10.1177/1758835920907504.
11. Zhang T., George D.J. Immunotherapy and targeted-therapy combinations mark a new era of kidney cancer treatment. Nat Med. 2021; 27 (4): 586–588. dоi: 10.1038/s41591-021-01320-x.
12. Wang Y., Deng W., Li N. et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front Pharmacol. 2018; 9: 185. dоi: 10.3389/fphar.2018.00185.
13. Dua D., Kelly C., Kovarik J., Iqbal M.S. The role of combining immunotherapy with primary (chemo)radiotherapy in curative treatment settings of the head and neck cancer. Asia-Pac J Сlin Оncol. 2022; 18 (2): e3–e10. dоi: 10.1111/ajco.13583.
14. Afzal M.Z., Mercado R.R., Shirai K. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. J Immunother Cancer. 2018; 6 (1): 64. dоi: 10.1186/s40425-018-0375-1.
15. Sun L., Morikawa K., Sogo Y., Sugiura Y. MHY1485 potentiates immunogenic cell death induction and anti-cancer immunity following irradiation. J Radiat Res. 2024; 65 (2): 205–214. doi: 10.1093/jrr/rrad107.
Review
For citations:
Bogush T.A., Grishanina A.N., Scherbakov A.M., Khochenkov D.A., Yunusova R.Yu., Kalyuzhny S.A., Kosorukov V.S. A Panel of Cultures of Cancer and Normal Lung Cells with a Characterized Expression of PD-L1 to Search and Development of the Target Modifiers of Immunotherapy. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(7-8):25-29. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-7-8-25-29