Clinical Metagenomics: a New Approach to Diagnostics of Infectious Diseases
https://doi.org/10.37489/0235-2990-2024-69-9-10-61-70
EDN: KMMVLH
Abstract
Globally, infectious diseases continue to be one of the leading causes of death, even in the face of substantial advancements in basic biological and medical sciences. Diagnostics of life-threatening conditions, including bacteremia, sepsis, meningitis, and encephalitis, is frequently constrained by the low sensitivity associated with culture methods. The application of PCR and various serological methods is constrained by a defined set of specific primers, DNA probes, antibodies, and antigens that are restricted to a limited range of potential pathogens. The accuracy and timeliness of laboratory diagnostics for infectious diseases are critical. In the past decade, a new discipline has emerged — clinical metagenomics, representing a novel approach in medical microbiology. Because clinical metagenomics can identify potentially any pathogen, regardless of its biological nature, it is a hypothesis-free diagnostic approach. The benefits and efficiency of using metagenomic methods of sequencing to identify bacterial, viral, fungal, and parasitic pathogens of infectious diseases in humans are discussed in this review.
About the Authors
V. V. GostevRussian Federation
Vladimir V. Gostev — Ph. D. in Biology, Senior Researcher at the Research Department of Medical Microbiology and Molecular Epidemiology; Associate Professor, Department of Medical Microbiology
Saint Petersburg
L. I. Gelezova
Russian Federation
Ludmila I. Gelezova — Ph. D. in Medicine, Senior Researcher at the Research Department of Medical Microbiology and Molecular Epidemiology
Saint Petersburg
P. S. Chulkova
Russian Federation
Polina S. Chulkova — Junior Researcher at the Research Department of Medical Microbiology and Molecular Epidemiology
Saint Petersburg
A. A. Avdeeva
Russian Federation
Alisa A. Avdeeva — Laboratory assistant-researcher at the Research Department of Medical Microbiology and Molecular Epidemiology
Saint Petersburg
O. S. Kalinogorskaya
Russian Federation
Olga S. Kalinogorskaya — Ph. D. in Medicine, Research Fellow at the Research Department of Medical Microbiology and Molecular Epidemiology
Saint Petersburg
V. A. Ageevets
Russian Federation
Vladimir A. Ageevets — Ph. D. in Biology, Research Fellow at the Research Department of Medical Microbiology and Molecular Epidemiology
Saint Petersburg
I. A. Tsvetkova
Russian Federation
Irina A. Tsvetkova — Ph. D. in Biology, Junior Researcher at the Research Department of Medical Microbiology and Molecular Epidemiology; Assistant at the Department of Microbiology, Virology, and Immunology
Saint Petersburg
A. V. Zhuravlev
Russian Federation
Anton V. Zhuravlev — Infectious disease specialist at the Hepatology Center; postgraduate student
Saint Petersburg
S. V. Sidorenko
Russian Federation
Sergey V. Sidorenko — D. Sc. in Medicine, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Research Department of Medical Microbiology and Molecular Epidemiology; Professor of the Department of Medical Microbiology
Saint Petersburg
References
1. GBDAR. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019.G. B. D. A. R. Collaborators. Lancet. 2022; 400 (10369): 2221‒2248.
2. Rukovodstvo po infekcionnym boleznyam. E. S. Belozerov, Yu. I. Bulan'kov, V. V. Vasil'ev i dr. (eds.). 2. SPb.: OOO «Izdatel'stvo Foliant», 2011; 743. ISBN 978-5-93929-219-1. (in Russian)
3. Poole S., Kidd S. P., Saeed K. A review of novel technologies and techniques associated with identification of bloodstream infection etiologies and rapid antimicrobial genotypic and quantitative phenotypic determination. Expert Rev Mol Diagn. 2018; 18 (6): 543‒555. doi: 10.1080/14737159.2018.1480369.
4. Khan A. R., Hussain W. L., Shum H. C., Hassan S. U. Point-of-care testing: a critical analysis of the market and future trends. Frontiers in Lab on a Chip Technologies. 2024; 3.
5. Chiu C. Y., Miller S. A. Clinical metagenomics. Nat Rev Genet. 2019; 20 (6): 341‒355. doi: 10.1038/s41576-019-0113-7.
6. Charalampous T., Kay G. L., Richardson H., Aydin A., Baldan R. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol. 2019; 37 (7): 783-792. doi: 10.1038/s41587-019-0156-5.
7. Blauwkamp T. A., Thair S., Rosen M. J., Blair L., Lindner M. S. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019; 4 (4): 663-674. doi: 10.1038/s41564-018-0349-6.
8. Thair S., Seng H., Hollemon D., Hong D., Blauwkamp T. et al. The SEPSEQ trial: clinical validation of the karius plasma next-generation sequencing test for pathogen detection in sepsis. Open Forum Infectious Diseases. 2017; 4 (Suppl 1): 735-735.
9. Batool M., Galloway-Pena J. Clinical metagenomics-challenges and future. Front Microbiol. 2023; 14: 1186424. doi: 10.3389/fmicb.2023.1186424.
10. Li N., Ma X., Zhou J., Deng J., Gu C. et al. Clinical application of metagenomic next-generation sequencing technology in the diagnosis and treatment of pulmonary infection pathogens: A prospective singlecenter study of 138 patients. J Clin Lab Anal. 2022; 36 (7): e24498. doi: 10.1002/jcla.24498.
11. Hogan C. A., Yang S., Garner O. B., Green D. A., Gomez C. A. et al. Clinical impact of metagenomic next-generation sequencing of plasma cellfree DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin Infect Dis. 2021; 72 (2): 239-245. doi: 10.1093/cid/ciaa035.
12. Du J., Zhang J., Zhang D., Zhou Y., Wu P. et al. Background filtering of clinical metagenomic sequencing with a library concentration-normalized model. Microbiol Spectr. 2022; 10 (5): e0177922. doi: 10.1128/spectrum.01779-22.
13. Fida M., Khalil S., Abu Saleh O., Challener D. W., Sohail M. R. et al. Diagnostic value of 16S ribosomal RNA gene polymerase chain reaction/sanger sequencing in clinical practice. Clin Infect Dis. 2021; 73 (6): 961-968. doi: 10.1093/cid/ciab167.
14. Salter S. J., Cox M. J., Turek E. M., Calus S. T., Cookson W. O. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014; 12: 87. doi: 10.1186/s12915-014-0087-z.
15. Stevenson M., Pandor A., Martyn-St James M., Rafia R., Uttley L. et al. Sepsis: the lightcycler septifast test MGRADE (R), sepsitest and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi — a systematic review and economic evaluation. Health Technol Assess. 2016; 20 (46): 1–246. doi: 10.3310/hta20460.
16. Haag H., Locher F., Nolte O. Molecular diagnosis of microbial aetiologies using SepsiTest in the daily routine of a diagnostic laboratory. Diagn Microbiol Infect Dis. 2013; 76 (4): 413–418. doi: 10.1016/j.diagmicrobio.2013.04.027.
17. Meyer T., Franke G., Polywka S. K., Lutgehetmann M., Gbadamosi J. et al. Improved detection of bacterial central nervous system infections by use of a broad-range PCR assay. J Clin Microbiol. 2014; 52 (5): 1751–1753. doi: 10.1128/JCM.00469-14.
18. Vanhee M., Flore K., Vanthourenhout S., Hellemans J., Muyldermans A. et al. Implementation of full-length 16S nanopore sequencing for bacterial identification in a clinical diagnostic setting. Diagn Microbiol Infect Dis. 2024; 108 (2): 116156. doi: 10.1016/j.diagmicrobio.2023.116156.
19. Lao H. Y., Wong L. L., Hui Y., Ng T. T., Chan C. T. et al. The clinical utility of Nanopore 16S rRNA gene sequencing for direct bacterial identification in normally sterile body fluids. Front Microbiol. 2023; 14: 1324494. doi: 10.3389/fmicb.2023.1324494.
20. Chen X., Cheng K., Sun X., Zhang Y., Cao Z. et al. Comparison of traditional methods and high-throughput genetic sequencing in the detection of pathogens in pulmonary infectious diseases. Ann Transl Med. 2021; 9 (8): 702. doi: 10.21037/atm-21-1322.
21. Wang C., You Z., Fu J., Chen S., Bai D. et al. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary invasive fungal disease. Front Cell Infect Microbiol. 2022; 12: 949505. doi: 10.3389/fcimb.2022.949505. eCollection 2022.
22. Zhang M., Wang W., Li X., Zhang X., Yang D. Fast and precise pathogen detection and identification of overlapping infection in patients with CUTI based on metagenomic next-generation sequencing: A case report. Medicine (Baltimore). 2021; 100: 49: e27902. doi: 10.1097/MD.0000000000027902.
23. Yang Y., Walls S. D., Gross S. M., Schroth G. P., Jarman R. G. et al. Targeted sequencing of respiratory viruses in clinical specimens for pathogen identification and genome-wide analysis. Methods Mol Biol. 2018; 1838: 125–140. doi: 10.1007/978-1-4939-8682-8_10.
24. Pogka V., Papadopoulou G., Valiakou V., Sgouras D. N., Mentis A. F. et al. Targeted virome sequencing enhances unbiased detection and genome assembly of known and emerging viruses-the example of SARS-CoV-2. Viruses. 2022; 14 (6): 1272. doi: 10.3390/v14061272.
25. Briese T., Kapoor A., Mishra N., Jain K., Kumar A. et al. Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio. 2015; 6 (5): e01491–15. doi: 10.1128/mBio.01491-15.
26. Kapoor V., Briese T., Ranjan A., Donovan W. M., Mansukhani M. M. et al. Validation of the VirCapSeq-VERT system for differential diagnosis, detection, and surveillance of viral infections. J Clin Microbiol. 2024; 62 (1): e0061223. doi: 10.1128/jcm.00612-23.
27. McGill F., Tokarz R., Thomson E. C., Filipe A., Sameroff S. et al. Viral capture sequencing detects unexpected viruses in the cerebrospinal fluid of adults with meningitis. J Infect. 2022; 84 (4): 499–510. doi: 10.1016/j.jinf.2021.12.042.
28. Gan M., Zhang Y., Yan G., Wang Y., Lu G. et al. Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients. Ann Clin Microbiol Antimicrob. 2024; 23 (1): 33. doi: 10.1186/s12941-024-00690-7.
29. Kuroda M., Sekizuka T., Shinya F., Takeuchi F., Kanno T. et al. Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing. J Clin Microbiol. 2012; 50 (5): 1810–2. doi: 10.1128/JCM.06715-11.
30. Wilson M. R., Naccache S. N., Samayoa E., Biagtan M., Bashir H. et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014; 370 (25): 2408–2417. doi: 10.1056/NEJMoa1401268.
31. Aubry A., Corvilain E., Ghelfenstein-Ferreira T., Camelena F., Meignin V. et al. Unmasking Bartonella henselae infection in the shadows of long COVID thanks to clinical metagenomics. Eur J Clin Microbiol Infect Dis. 2024; 43 (5): 1025–1029. doi: 10.1007/s10096-024-04801-2.
32. Chiu C. Y., Coffey L. L., Murkey J., Symmes K., Sample H. A. et al. Diagnosis of fatal human case of St. Louis encephalitis virus infection by metagenomic sequencing, California, 2016. Emerg Infect Dis. 2017; 23 (10): 1964–1968. doi: 10.3201/eid2310.161986.
33. Wilson M. R., Suan D., Duggins A., Schubert R. D., Khan L. M. et al. A novel cause of chronic viral meningoencephalitis: Cache Valley virus. Ann Neurol. 2017; 82 (1): 105–114. doi: 10.1002/ana.24982.
34. Farrington M., Elenz J., Ginsberg M., Chiu C. Y., Miller S. et al. Powassan virus infection detected by metagenomic next-generation sequencing, Ohio, USA. Emerg Infect Dis. 2023; 29 (4): 838–841. doi: 10.3201/eid2904.221005.
35. He S., Wei J., Feng J., Liu D., Wang N. et al. The application of metagenomic next-generation sequencing in pathogen diagnosis: a bibliometric analysis based on Web of Science. Front Cell Infect Microbiol. 2023; 13: 1112229. doi: 10.3389/fcimb.2023.1112229.
36. Forbes J. D., Knox N. C., Peterson C. L., Reimer A. R. Highlighting clinical metagenomics for enhanced diagnostic decision-making: a step towards wider implementation. Comput Struct Biotechnol J. 2018; 16: 108–120. doi: 10.1016/j.csbj.2018.02.006.
37. Fourgeaud J., Regnault B., Ok V., Da Rocha N., Sitterle E. et al. Performance of clinical metagenomics in France: a prospective observational study. Lancet Microbe. 2024; 5 (1): e52–e61. doi: 10.1016/S2666-5247(23)00244-6.
38. Fu Z. F., Zhang H. C., Zhang Y., Cui P., Zhou Y. et al. Evaluations of clinical utilization of metagenomic next-generation sequencing in adults with fever of unknown origin. Front Cell Infect Microbiol. 2021; 11: 745156. doi: 10.3389/fcimb.2021.745156.
39. Feng S., Rao G., Wei X., Fu R., Hou M. et al. Clinical metagenomic sequencing of plasma microbial cell-free DNA for febrile neutropenia in patients with acute leukaemia. Clin Microbiol Infect. 2024; 30 (1): 107–113. doi: 10.1016/j.cmi.2023.05.034.
40. Schulz E., Grumaz S., Hatzl S., Gornicec M., Valentin T. et al. Pathogen detection by metagenomic next-generation sequencing during neutropenic fever in patients with hematological malignancies. Open Forum Infect Dis. 2022; 9 (8): ofac393. doi: 10.1093/ofid/ofac393.
41. Kalantar K. L., Neyton L., Abdelghany M., Mick E., Jauregui A. et al. Integrated host-microbe plasma metagenomics for sepsis diagnosis in a prospective cohort of critically ill adults. Nat Microbiol. 2022; 7 (11): 1805–1816. doi: 10.1038/s41564-022-01237-2.
42. Jing C., Chen H., Liang Y., Zhong Y., Wang Q. et al. Clinical evaluation of an improved metagenomic next-generation sequencing test for the diagnosis of bloodstream infections. Clin Chem. 2021; 67 (8): 1133–1143. doi: 10.1093/clinchem/hvab061.
43. Wilson M. R., Sample H. A., Zorn K. C., Arevalo S., Yu G. et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 2019; 380 (24): 2327–2340. doi: 10.1056/NEJMoa1803396.
44. Wang Y. N., Wu Y. T., Cao L., Niu W. Q. Application of metagenomic next-generation sequencing in the etiological diagnosis of refractory pneumonia in children. Front Microbiol. 2024; 15: 1357372. doi: 10.3389/fmicb.2024.1357372.
45. Zhan Y., Xu T., He F., Guan W. J., Li Z. et al. Clinical evaluation of a metagenomics-based assay for pneumonia management. Front Microbiol. 2021; 12: 751073. doi: 10.3389/fmicb.2021.751073.
46. Tsitsiklis A., Osborne C. M., Kamm J., Williamson K., Kalantar K. et al. Lower respiratory tract infections in children requiring mechanical ventilation: a multicentre prospective surveillance study incorporating airway metagenomics. Lancet Microbe. 2022; 3 (4): e284–e293. doi: 10.1016/S2666-5247 (21)00304-9.
47. Mu S., Hu L., Zhang Y., Liu Y., Cui X. et al. Prospective evaluation of a rapid clinical metagenomics test for bacterial pneumonia. Front Cell Infect Microbiol. 2021; 11: 684965. doi: 10.3389/fcimb.2021.684965.
48. Lv M., Zhu C., Zhu C., Yao J., Xie L. et al. Clinical values of metagenomic next-generation sequencing in patients with severe pneumonia: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2023; 13: 1106859. doi: 10.3389/fcimb.2023.1106859.
49. d'Humieres C., Gaia N., Gueye S., de Lastours V., Leflon-Guibout V. et al. Contribution of clinical metagenomics to the diagnosis of bone and joint infections. Front Microbiol. 2022; 13: 863777. doi: 10.3389/fmicb.2022.863777
50. Wilson M. R., Shanbhag N. M., Reid M. J., Singhal N. S., Gelfand J. M. et al. Diagnosing balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol. 2015; 78 (5): 722–30. doi: 10.1002/ana.24499.
51. Feng L., Zhang A., Que J., Zhou H., Wang H. et al. The metagenomic next-generation sequencing in diagnosing central nervous system an giostrongyliasis: a case report. BMC Infect Dis. 2020; 20 (1): 691. doi: 10.1186/s12879-020-05410-y.
52. Williams E., Isles N. S., Seemann T., Kilpatrick T., Grigg A. et al. Case report: confirmation by metagenomic sequencing of visceral leishmaniasis in an immunosuppressed returned traveler. Am J Trop Med Hyg. 2020; 103 (5): 1930–1933. doi: 10.4269/ajtmh.19-0841.
53. Schneeberger P. H. H., Becker S. L., Pothier J. F., Duffy B., N'Goran E. K. et al. Metagenomic diagnostics for the simultaneous detection of multiple pathogens in human stool specimens from Cote d'Ivoire: a proof-of-concept study. Infect Genet Evol. 2016; 40: 389-397. doi: 10.1016/j.meegid.2015.08.044.
54. Hoang M. T. V., Irinyi L., Hu Y., Schwessinger B., Meyer W. Long-readsbased metagenomics in clinical diagnosis with a special focus on fungal infections. Front Microbiol. 2021; 12: 708550. doi: 10.3389/fmicb.2021.708550.
55. Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017; 18 (1): 2.
56. Greninger A. L. The challenge of diagnostic metagenomics. Expert Rev Mol Diagn. 2018; 18, (7): 605-615. doi: 10.1080/14737159.2018.1487292.
57. Dulanto Chiang A., Dekker J. P. From the pipeline to the bedside: advances and challenges in clinical metagenomics. J Infect Dis. 2020; 221 (Suppl 3): S331-S340. doi: 10.1093/infdis/jiz151.
Review
For citations:
Gostev V.V., Gelezova L.I., Chulkova P.S., Avdeeva A.A., Kalinogorskaya O.S., Ageevets V.A., Tsvetkova I.A., Zhuravlev A.V., Sidorenko S.V. Clinical Metagenomics: a New Approach to Diagnostics of Infectious Diseases. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(9-10):61-70. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-9-10-61-70. EDN: KMMVLH