Применение бактериоцинов, включая микроцины: настоящее и будущее
https://doi.org/10.37489/0235-2990-2024-69-9-10-71-85
EDN: JCQLUN
Аннотация
В последние десятилетия бактериоцины активно изучают как антимикробные соединения. Бактериоцины, в основном, использовались в качестве пищевых консервантов, однако в настоящее время они вызывают повышенный интерес как потенциальные клинические антимикробные препараты и возможные иммуномодулирующие агенты. Инфекции, вызванные бактериями, устойчивыми к антибиотикам, были объявлены глобальной угрозой общественному здравоохранению. Бактериоцины представляют собой потенциальное решение этой всемирной угрозы благодаря их широкому или узкому спектру действия против бактерий, устойчивых к антибиотикам. В частности, несмотря на их роль как природных альтернатив химическим консервантам в обеспечении безопасности пищевых продуктов, низин остаётся единственным бактериоцином, одобренным регулирующими органами в качестве пищевого консерванта. В статье освещены данные о безопасности применения бактериоцинов и их возможной токсичности, что может представлять барьер для более широкого их использования в медицине и отраслях промышленности. В статье описаны последние тенденции в разработке препаратов на основе бактериоцинов, их эффективности, спектре антимикробной активности и механизмах воздействия на макроорганизмы.
Ключевые слова
Об авторах
М. Г. ТеймуразовРоссия
Теймуразов Марат Георгиевич — к. б. н., старший научный сотрудник лаборатории антимикробных препаратов отдела молекулярной микробиологии
Оболенск
Конфликт интересов:
Авторы заявляют об отсутствии конфликта интересов.
И. М. Коваленко
Россия
Коваленко Илья Михайлович — младший научный сотрудник лаборатории антимикробных препаратов отдела молекулярной микробиологии
Оболенск
Конфликт интересов:
Авторы заявляют об отсутствии конфликта интересов.
О. Е. Хохлова
Россия
Хохлова Ольга Евгеньевна — д. б. н., доцент, главный научный сотрудник лаборатории антимикробных препаратов отдела молекулярной микробиологии
Оболенск
Конфликт интересов:
Авторы заявляют об отсутствии конфликта интересов.
Список литературы
1. Min K. H., Kim K. H., Ki M.-R., Pack S. P. Antimicrobial peptides and their biomedical applications: a review. Antibiotics. 2024; 13: 794. doi: 10.3390/antibiotics13090794.
2. Corrêa J. A. F., de Melo Nazareth T., da Rocha G. F., Luciano F. B. Bioactive antimicrobial peptides from food proteins: perspectives and challenges for controlling foodborne pathogens. Pathogens. 2023; 12: 477. doi: 10.3390/pathogens12030477.
3. Mahlapuu M., Håkansson J., Ringstad L., Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016; 6: 194. doi: 10.3389/fcimb.2016.00194.
4. Egan K., Field D., Rea M. C., Ross R. P., Hill C., Cotter P. D. Bacteriocins: novel solutions to age old spore‐related problems? Front Microbiol. 2016; 7: 461. doi: 10.3389/fmicb.2016.00461.
5. Bourdichon F., Boyaval P., Casaregola S. The 2012 Inventory of Microbial Species with technological beneficial role in fermented food products. Bull Int Dairy Federation. 2012; 455: 22–61. doi: 10.1016/j.ijfoodmicro.2011.12.030.
6. Lahiri D., Nag M., Dutta B., Sarkar T., Pati S., Basu D., Abdul Kari Z., Wei L. S., Smaoui S., Wen Goh K., Ray R. R. Bacteriocin: A natural approach for food safety and food security. Front. Bioeng Biotechnol. 2022; 10: 1005918. doi: 10.3389/fbioe.2022.1005918.
7. Silva C. C. G, Silva S. P. M., Ribeiro S. C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018; 9: 594. doi: 10.3389/fmicb.2018.00594.
8. Zielińska D., Kolożyn‐Krajewska D. Food‐origin lactic acid bacteria may exhibit probiotic properties. Biomed Res Int. 2018; 18: 1–15. doi: 10.1155/2018/5063185.
9. Ryan K. A., Jayaraman T., Daly P. Isolation of lactobacilli with probiotic properties from the human stomach. Lett Appl Microbiol. 2008; 47 (4): 269–274. doi: 10.1111/j.1472-765x.2008.02416.x.
10. Verso L. L., Lessard M., Talbot G., Fernandez B., Fliss I. Isolation and selection of potential probiotic bacteria from the pig gastrointestinal tract. Probiot Antimicrob Proteins. 2018; 10 (2): 299–312. doi: 10.1007/s12602-017-9309-3.
11. O'Sullivan J. N., Rea M. C., O'Connor PM, Hill C., Ross R. P. Human skin microbiota is a rich source of bacteriocin‐producing staphylococci that kill human pathogens. FEMS Microbiol Ecol. 2019; 95 (2): fiy241. doi: 10.1093/femsec/fiy241.
12. Zipperer A., Konnerth M. C., Laux C., et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016; 535 (7613): 511–516. doi: 10.1038/nature18634.
13. Caufield J. H., Zhou Y., Garlid A. O. A reference set of curated biomedical data and metadata from clinical case reports. Sci Data. 2018; 5 (1): 1–18. doi: 10.1038/sdata.2018.258.
14. Wang G., Li X., Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016; 44: D1087– D1093. doi: 10.1093/nar/gkv1278.
15. Perez R. H., Zendo T., Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Factories. 2014; 13: S3. doi: 10.1186/1475-2859-13-S1-S3.
16. Zacharof M. P., Lovitt R. W. Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia. 2012; 2: 50–56. doi: 10.1016/j.apcbee.2012.06.010.
17. Ahmad V., Khan M. S., Jamal Q. M.S., Alzohairy M. A., Al Karaawi M. A., Siddiqui M. U. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. Int. J Antimicrob Agents. 2017; 49: 1– 11. doi:10.1016/j.ijantimicag.2016.08.016.
18. Parada J. L., Caron C. R., Medeiros A. B. P., Soccol C. R. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives, Braz Arch Biol Technol. 2007; 50: 521–542. doi: 10.1590/S1516-89132007000300018.
19. de Vos W. M., Kuipers O. P., van der Meer J. R., Siezen R. J. Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol. 1995; 17 (3): 427–437. doi: 10.1111/j.1365-2958.1995.mmi_17030427.x.
20. Sahl H. G., Bierbaum G. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol. 1998; 52: 41–79. doi: 10.1146/annurev.micro.52.1.41.
21. Oppegård C., Rogne P., Emanuelsen L., Kristiansen P. E., Fimland G., NissenMeyer J. The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol. 2007; 13(4): 210–219. doi: 10.1159/000104750.
22. Drider D., Fimland G., Héchard Y., McMullen L. M., Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev. 2006; 70 (2): 564–582. doi: 10.1128/MMBR.00016-05.
23. Papagianni M., Anastasiadou S. Pediocins: the bacteriocins of pediococci. sources, production, properties and applications. Microb Cell Fact. 2009; 8: 3. doi: 10.1186/1475-2859-8-3.
24. O'Shea E. F., O'Connor P. M., O'Sullivan O., Cotter P. D., Ross R. P., Hill C. Bactofencin A, a new type of cationic bacteriocin with unusual immunity. mBio. 2013; 29; 4 (6): e00498–13. doi: 10.1128/mBio.00498-13.
25. O' Connor P. M., O' Shea E. F., Cotter P. D., Hill C., Ross R. P. The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Sci Rep. 2018; 7; 8(1): 11833. doi: 10.1038/s41598-018-30271-6.
26. Cotter P. D., Hill C., Ross R. P. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005; 3 (10): 777–788. doi: 10.1038/nrmicro1273.
27. Simons A., Alhanout K., Duval R. E. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020; 27; 8 (5): 639. doi: 10.3390/microorganisms8050639.
28. Kumariya R., Garsa A. K., Rajput Y. S., Sood S. K., Akhtar N., Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog. 2019; 128: 171–177. doi: 10.1016/j.micpath.2019.01.002.
29. Vaughan E. E., Daly C., Fitzgerald G. F. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol. 1992; 73 (4): 299–308. doi: 10.1111/j.1365-2672.1992.tb04981.x.
30. Marković K. G., Grujović M. Ž., Koraćević M. G. Colicins and microcins produced by Enterobacteriaceae: characterization, mode of action, and putative applications. Int J Environ Res Public Health. 2022; 19: 11825. doi: 10.3390/ijerph191811825.
31. Rebuffat S. Bacteriocins from gram-negative bacteria: a classification? In: Drider D., Rebuffat S (eds) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New York, 2011; 55–72.
32. Cascales E., Buchanan S. K., Duché D. Colicin biology. Microbiol Mol Biol Rev. 2007; 71: 158–229. doi: 10.1128/MMBR.00036-06.
33. Telhig S., Ben Said L., Torres C., Rebuffat S., Zirah S., Fliss I. Evaluating the potential and synergetic effects of microcins against multidrug-resistant Enterobacteriaceae. Microbiol Spectr. 2022; 29; 10 (3): e0275221. doi: 10.1128/spectrum.02752-21.
34. Telhig S., Pham N. P., Ben Said L., Rebuffat S., Ouellette M., Zirah S., Fliss I. Exploring the genetic basis of natural resistance to microcins. Microb Genom. 2024; 10 (2): 001156. doi: 10.1099/mgen.0.001156.
35. Pons A. M., Lanneluc I., Cottenceau G., Sable S. New developments in non-post translationally modified microcins. Biochimie. 2002; 84 (5–6): 531–537. doi: 10.1016/s0300-9084(02)01416-5.
36. Kuznetsova M. V., Mihailovskaya V. S., Remezovskaya N. B., Starčič E. M. Bacteriocin-producing Escherichia coli isolated from the gastrointestinal tract of farm animals: prevalence, molecular characterization and potential for application. Microorganisms. 2022; 2; 10 (8): 1558. doi: 10.3390/microorganisms10081558.
37. Kenneally C., Murphy C. P., Sleator R. D., Culligan E. P. Turbidimetric bioassays: A solution to antimicrobial activity detection in asymptomatic bacteriuria isolates against uropathogenic Escherichia coli. Microbiologyopen. 2024; 13 (3): e1411. doi: 10.1002/mbo3.1411.
38. Baquero F., Beis K., Craik D. J., Li Y., Link A. J., Rebuffat S., Salomón R., Severinov K., Zirah S., Hegemann J. D. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep. 2024; 20; 41 (3): 469–511. doi: 10.1039/d3np00046j.
39. Aguilera P., Berríos-Pastén C., Veloso M., Gálvez-Silva M., Turbant F., Lagos R., Wien F., Arluison V., Marcoleta A. E. The Green Tea Polyphenol Epigallocatechin-Gallate (EGCG) Interferes with Microcin E492 Amyloid Formation. Molecules. 2023; 25; 28 (21): 7262. doi: 10.3390/molecules28217262.
40. Maher S., McClean S., McGrath S. Efficacy of nisin against MRSA in a murine skin infection model. J Antimicrob Chemother. 2021; 76 (8): 2078–2086. doi: 10.1093/jac/dkab133.
41. Gómez N. C., Ramiro J. M., Quecan B. X. V., de Melo Franco B. D. G. Lactobacillus salivarius bacteriocin ABP-118: Efficacy in a murine model of bacterial vaginosis. Microbial Pathogenesis. 2022; 164: 105411. doi: 10.1016/j.micpath.2022.105411.
42. Bucker R., Zakrewski S. S., Wiegand S., Pieper R., Fromm A., Fromm M., Gunzel D., Schulzke J.-D. Zinc prevents intestinal epithelial barrier dysfunction induced by alpha-hemolysin-producing Escherichia coli 536 infection in porcine colon. Veterinary Microbiology. 2020; 244: 108632. doi: 10.1016/j.vetmic.2020.108632.
43. Barraza D. E., Almeida R. C., Del Campo R. Enterocin a: effectiveness in reducing gastrointestinal infections in swine models. Animal Feed Science and Technology. 2021; 275: 114890. doi: 10.1016/j.anifeedsci.2021.114890.
44. Burke L., O’Sullivan O., Cotter P. D. Application of Lactococcin in extending the shelf life of dairy products. Dairy Science & Technology. 2023; 103 (1): 45–56. doi: 10.3166/dst.2023.0015.
45. Martínez B., Rodríguez A., Suárez J. E. Use of Plantaricin to control Listeria monocytogenes in meat products. Meat Science. 2022; 185: 108707. doi: 10.1016/j.meatsci.2022.108707.
46. Jones S. E., Carvalho M. G., Abrams P. A. Bacteriocin-based antimicrobial coatings for medical devices: efficacy and safety evaluation. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020; 108 (6): 2540–2549. doi: 10.1002/jbm.b.34601.
47. Hernández D., Cardell E., Zúñiga M. Effectiveness of probiotic supplements containing bacteriocin-producing Lactobacillus plantarum in improving gut health. Nutrients. 2021; 13 (6). doi: 10.3390/nu13062021.
48. Eijsink V. G. H. Antimicrobial peptides and bacteriocins: therapeutic potential. Internati J Med Microbiol. 2018; 308 (1): 28–39. doi: 10.1186/s13567-017-0425-6.
49. Garcia P. Nisin-loaded nanoparticles as a therapeutic strategy against respiratory infection by Streptococcus pneumoniae. J Antimicrob Chemother. 2019; 74 (7): 1981–1991.
50. Liu X. Topical application of nisin-based formulations for the treatment of Staphylococcus aureus-induced skin infections. Antimicrobial Agents Chemother. 2017; 61 (4): e01947–16.
51. Malvisi M. Antimicrobial and anti-inflammatory activity of Lactococcin in bovine mastitis. J Dairy Science. 2016; 99 (5): 3647–3657.
52. Papo N., Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci. 2005; 62: 784–790. doi: 10.1007/s00018-005-4560-2.
53. Hoskin D. W., Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. BBA Biomembranes. 2008; 1778: 357–375. doi: 10.1016/j.bbamem.2007.11.008.
54. Kaur S., Kaur S. Bacteriocins as potential anticancer agents. Front Pharmacol. 2015; 6: 272. doi: 10.3389/fphar.2015.00272.
55. Lagos R., Tello M., Mercado G. Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr Pharm Biotechnol. 2009; 10: 74–85. doi: 10.2174/138920109787048643.
56. Lancaster L. E., Wintermeyer W., Rodnina M. V. Colicins and their potential in cancer treatment. Blood Cell Mol Dis. 2007; 38: 15–18. doi: 10.1016/j.bcmd.2006.10.006.
57. Ahmad V., Khan M. S., Jamal Q. M. S. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents. 2017; 49: 1–11. doi: 10.1016/j.ijantimicag.2016.08.016.
58. Kamarajan P., Hayami T., Matte B. Nisin Z. P. A bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One. 2015; doi: 10:e0131008.
59. Joo N. E., Ritchie K., Kamarajan P. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC 1. Cancer Med. 2012; 1: 295–305. doi: 10.1002/cam4.35.
60. Yamada T., Hiraoka Y., Ikehata M. Apoptosis or growth arrest: modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin. Proc Natl Acad Sci U. S. A. 2004; 101: 4770–5. doi: 10.1073/pnas.0400899101.
61. Aranha C., Gupta S., Reddy K. Contraceptive efficacy of antimicrobial peptide nisin: in vitro and in vivo studies. Contraception. 2004; 69: 333–338. doi: 10.1016/j.contraception.2003.11.002.
62. Sutyak K. E., Anderson R. A., Dover S. E. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol. 2008; 2008: 540758. doi: 10.1155/2008/540758.
63. Kaur B., Balgir P. P., Mittu B. Biomedical applications of fermenticin HV6b isolated from Lactobacillus fermentum HV6b MTCC10770. Biomed Res Int. 2013; 2013: 168438. doi: 10.1155/2013/168438.
64. Silkin L., Hamza S., Kaufman S. Spermicidal bacteriocins: lacticin 3147 and subtilosin A. Bioorg Med Chem Lett. 2008; 18: 3103–3106. doi: 10.1016/j.bmcl.2007.11.024.
65. Reddy K., Aranha C., Gupta S. Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies. Reproduction. 2004; 128: 117–26. doi: 10.1530/rep.1.00028.
66. Dicks L. M., Dreyer L., Smith C. A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front Microbiol. 2018; 9: 2297. doi: 10.3389/fmicb.2018.02297.
67. Wachsman M. B., Castilla V., de Ruiz Holgado A. P. Enterocin C. R.L35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir Res. 2003; 58: 17–24. doi: 10.1016/s0166-3542(02)00099-2.
68. Todorov S. D., Wachsman M., Tomé E. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol. 2010; 27: 869–79. doi: 10.1016/j.fm.2010.05.001.
69. Quintana V. M., Torres N. I., Wachsman M. B. Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J Appl Microbiol. 2014; 117: 1253–1259. doi: 10.1111/jam.12618.
70. Shafique B., Ranjha M. M., Murtaza M. A., Walayat N., Nawaz A., Khalid W., Mahmood S., Nadeem M., Manzoor M. F., Ameer K., Aadil R. M., Ibrahim S. A. Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. Microorganisms. 2022; 28; 11 (1): 85. doi: 10.3390/microorganisms11010085.
71. Field D., Fernandez de Ullivarri M., Ross R. P., Hill C. After a century of nisin research — where are we now? FEMS Microbiol Rev. 2023; 19; 47 (3): fuad023. doi: 10.1093/femsre/fuad023.
72. Yu W., Guo J., Liu Y., Xue X., Wang X., Wei L., Ma J. Potential impact of combined inhibition by bacteriocins and chemical substances of foodborne pathogenic and spoilage bacteria: a review. Foods. 2023; 20; 12 (16): 3128. doi: 10.3390/foods12163128.
73. Darbandi A., Asadi A., Mahdizade Ari M., Ohadi E., Talebi M., Halaj Zadeh M., Darb Emamie A., Ghanavati R., Kakanj M. Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal. 2022; 36 (1): e24093. doi: 10.1002/jcla.24093.
74. Benabbou R., Subirade M., Desbiens M., Fliss I. Divergicin M35-chitosan film: development and characterization. Probiotics Antimicrob Proteins. 2020; 12 (4): 1562–1570. doi: 10.1007/s12602-020-09660-9.
75. Gumienna M., Górna B. Antimicrobial food packaging with biodegradable polymers and bacteriocins. Molecules. 2021; 18; 26 (12): 3735. doi: 10.3390/molecules26123735.
76. Sanguyo F. H. C., Angeles F. L. A., Deborde S. M. V. Bacteriocin and its current application as a food packaging film component against spoilage: a narrative review. AJBLS. 2021; 10: 325–339. doi: 10.5530/ajbls.2021.10.45.
77. Murphy N., Moreno V., Hughes D. J., Vodicka L., Vodicka P., Aglago E. K., Gunter M. J., Jenab M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med. 2019; 69: 2–9. doi: 10.1016/j.mam.2019.06.005.
78. Jiang Y., Berry D. C., Graff J. M. Distinct cellular and molecular mechanisms for β3 adrenergic receptor-induced beige adipocyte formation. Elife. 2017; 11; 6: e30329. doi: 10.7554/eLife.30329.
79. Nozhevnikova A. N., Botchkova E. A., Plakunov V. K. Multi-species biofilms in ecology, medicine, and biotechnology. Mikrobiologiia. 2015; 84 (6): 623–644. PMID: 26964353.
80. Flemming H. C., Wingender J., Szewzyk U., Steinberg P., Rice S. A., Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016; 11; 14 (9): 563–75. doi: 10.1038/nrmicro.2016.94.
81. Duarte A. F. S., Ceotto-Vigoder H., Barrias E. S., Souto-Padrón T. C., Nes I. F., Bastos M. D. Hyicin 4244, the first sactibiotic described in staphylococci, exhibits an anti-staphylococcal biofilm activity. Int J Antimicrob Agents. 2018; 51 (3): 349–356. doi: 10.1016/j.ijantimicag.2017.06.025.
82. Chopra L., Singh G., Kumar Jena K., Sahoo D. K. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep. 2015; 21; 5: 13412. doi: 10.1038/srep13412.
83. Zhang L., Ben Said L., Hervé N., Zirah S., Diarra M. S., Fliss I. Effects of drinking water supplementation with Lactobacillus reuteri, and a mixture of reuterin and microcin J25 on the growth performance, caecal microbiota and selected metabolites of broiler chickens. J Anim Sci Biotechnol. 2022; 5; 13 (1): 34. doi: 10.1186/s40104-022-00683-6.
84. European Commission. Ban on antibiotics as growth promoters in animal feed. 2005; Available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_05_1687. Accessed 31 Aug 2023.
85. AccessScience Editors. U. S. bans antibiotics use for enhancing growth in livestock. McGraw-Hill Professional. 2017. doi: 10.1036/1097-8542.br0125171.
86. Prescott J. Veterinary Antimicrobial Stewardship in Australia. Can Vet J. 2019; 60 (3): 246–248. PMID: 30872846.
87. World Organization for Animal Health (WOAH) Annual report for antimicrobial agents intended for use in animals, 7th edn. 2023; Available at: https://www.woah.org/app/uploads/2023/05/a-seventh-annual-reportamu-final.pdf. Accessed 19 Sept 2023.
88. Ben Lagha A., Haas B., Gottschalk M., Grenier D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res. 2017; 48: 22. doi: 10.1186/s13567-017-0425-6.
89. Cheng W. N., Han S. G. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — a review. Asian-Australas J Anim Sci. 2020; 33: 1699–1713. doi: 10.5713/ajas.20.0156.
90. Field D., Considine K., O’Connor P. M. Bio-engineered nisin with increased anti-Staphylococcus and selectively reduced anti-Lactococcus activity for treatment of bovine mastitis. Int J Mol Sci. 2021. doi: 10.3390/ijms22073480.
91. Bennett S., Ben Said L., Lacasse P. Susceptibility to nisin, bactofencin, pediocin and reuterin of multidrug resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis causing bovine mastitis. Antibiotics (Basel). 2021; 10 (11): 1418. doi: 10.3390/antibiotics10111418.
92. Heinzinger L. R., Pugh A. R., Wagner J. A., Otto M. Evaluating the translational potential of bacteriocins as an alternative treatment for Staphylococcus aureus infections in animals and humans. Antibiotics (Basel). 2023; 12 (8): 1256. doi: 10.3390/antibiotics12081256.
93. Raheel I., Mohammed A. N., Mohamed A. A. The efficacy of bacteriocins against biofilm-producing bacteria causing bovine clinical mastitis in dairy farms: a new strategy. Curr Microbiol. 2023; 80: 229. doi: 10.1007/s00284-023-03324-x.
94. Klostermann K., Crispie F., Flynn J. Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. J Dairy Res. 2010; 77: 231–238. doi: 10.1017/S0022029909990239.
95. Salvucci E., Saavedra L., Hebert E. M. Enterocin C. R. L35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog Dis. 2012; 9: 68–74. doi: 10.1089/fpd.2011.0972.
96. Soltani S., Hammami R., Cotter P. D., Rebuffat S., Said L. B., Gaudreau H., Bédard F., Biron E., Drider D., Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev. 2021; 8; 45 (1): fuaa039. doi: 10.1093/femsre/fuaa039.
97. Riboulet-Bisson E., Sturme M. H. J., Jeffery I. B. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS ONE. 2012; 7: e31113. doi: 10.1371/journal.pone.0031113.
98. Grilli E., Messina M. R., Catelli E., et al. Pediocin A improves growth performance of broilers challenged with Clostridium perfringens. Poult Sci. 2009; 88: 2152–2158. doi: 10.3382/ps.2009-00160.
99. Reuben R. C., Sarkar S. L., Ibnat H. Novel mono- and multi-strain probiotics supplementation modulates growth, intestinal microflora composition and haemato-biochemical parameters in broiler chickens. Vet Med Sci. 2022; 8 (2): 668–680.doi: 10.1002/vms3.709.
100. Wang J., Zhang S., Ouyang Y., Li R. Current developments of bacteriocins, screening methods and their application in aquaculture and aquatic products. Biocatal Agric Biotechnol. 2019. doi: 10.1016/j.bcab.2019.101395.
101. Stentiford G. D., Peeler E. J., Tyler C. R. A seafood risk tool for assessing and mitigating chemical and pathogen hazards in the aquaculture supply chain. Nat Food. 2022; 3: 169–178. doi: 10.1038/s43016-022-00465-3.
102. Feito J., Araújo C., Arbulu S., et al. Design of Lactococcus lactis strains producing garvicin A and/or garvicin Q, either alone or together with nisin A or nisin Z and high antimicrobial activity against Lactococcus garvieae. Foods. 2023; 12: 1063. doi: 10.3390/foods12051063.
103. Contente D., Díaz-Rosales P., Feito J. Immunomodulatory effects of bacteriocinogenic and non-bacteriocinogenic Lactococcus cremoris of aquatic origin on rainbow trout (Oncorhynchus mykiss, Walbaum). Front Immunol. 2023; 14: 1178462. doi: 10.3389/fimmu.2023.1178462.
104. Nazari M., Smith D. L. A PGPR-produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Front Plant Sci. 2020; 11: 916. doi: 10.3389/fpls.2020.00916.
105. Negash A. W., Tsehai B. A. Current applications of bacteriocin. Int J Microbiol. 2020; 20: 4374891. doi: 10.1155/2020/4374891.
106. Cesa-Luna C., Alatorre-Cruz J.-M, Carreño-López R., et al. Emerging applications of bacteriocins as antimicrobials, anticancer drugs, and modulators of the gastrointestinal microbiota. Pol J Microbiol. 2021; 70: 143–159. doi: 10.33073/pjm-2021-020.
Рецензия
Для цитирования:
Теймуразов М.Г., Коваленко И.М., Хохлова О.Е. Применение бактериоцинов, включая микроцины: настоящее и будущее. Антибиотики и Химиотерапия. 2024;69(9-10):71-85. https://doi.org/10.37489/0235-2990-2024-69-9-10-71-85. EDN: JCQLUN
For citation:
Teimurazov M.G., Kovalenko I.M., Khokhlova O.E. Application of Bacteriocins in Practice, Including Microcins: the Present and the Future. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(9-10):71-85. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-9-10-71-85. EDN: JCQLUN