Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

The Effectiveness of the Combined Use of Meropenem and Avibactam Against Carbapenemase-Producing Klebsiella pneumoniae Strains in an in vitro Dynamic Model

https://doi.org/10.37489/0235-2990-2024-69-11-12-32-40

EDN: MOTBYZ

Abstract

Background. Combinations of carbapenems with new-generation carbapenemase inhibitors are successfully used to combat infections caused by carbapenemase-producing Klebsiella pneumoniae strains. However, K. pneumoniae resistance to such combinations is already described. Therefore, the search for new antibiotic/inhibitor combinations is important. In this regard, meropenem/avibactam combination seems promising, with its effectiveness becoming the subject of the current study.

The aim of this study was to evaluate the effectiveness of the combination of meropenem with the new carbapenemase inhibitor avibactam against carbapenemase-producing K. pneumoniae strains in an in vitro dynamic model.

Methods. Two carbapenemase-producing strains, KPC (K. pneumoniae 28) and OXA-48 (K. pneumoniae 145), were exposed to meropenem or its combination with avibactam in the hollow fiber infection model that simulated the pharmacokinetic profiles of drugs in the human lung epithelial fluid. The following dosage regimens were simulated: 2000 mg of meropenem and 500 mg of avibactam as a 2-hour infusion every 8 hours during 5 days. The effect of the drugs on the total and resistant subpopulations of K. pneumoniae was evaluated by plating samples on agar media without and with meropenem at different MIC-fold concentrations.

Results. Meropenem alone did not reduce the numbers of the total population and did not suppress the growth of resistant subpopulations of both strains, while combining meropenem with avibactam significantly reduced the total bacterial numbers and completely prevented the growth of resistant cells.

Conclusion. The combination of meropenem/avibactam seems promising, due to the fact that it was characterized by high efficacy and a lack of development of resistance to meropenem throughout the entire simulated course of therapy.

About the Authors

E. N. Strukova
Gause Institute of New Antibiotics (GINA)
Russian Federation

Elena N. Strukova — Ph. D. in Biology, Senior Researcher at the Laboratory of Pharmacokinetics and Pharmacodynamics, Gause Institute of New Antibiotics (GINA), ResearcherID: C-9446-2015. Scopus Author ID: 24336721100. eLibrary SPINcode: 9693-7240.

Moscow


Competing Interests:

none



M. V. Golikova
Gause Institute of New Antibiotics (GINA)
Russian Federation

Maria V. Golikova — Ph. D. in Biology, Head of Laboratory of Pharmacokinetics and Pharmacodynamics, Gause Institute of New Antibiotics (GINA), Researcher ID: O-7873-2016. eLibrary SPIN-code: 9078-4922. Scopus Author ID: 56497807500.

Moscow


Competing Interests:

none



M. B. Kobrin
Gause Institute of New Antibiotics (GINA)
Russian Federation

Mikhail B. Kobrin — Senior Researcher at the Laboratory of Pharmacokinetics and Pharmacodynamics, Russia. Scopus Author ID: 7003801263.

Moscow


Competing Interests:

none



S. A. Dovzhenko
Gause Institute of New Antibiotics (GINA)
Russian Federation

Svetlana A. Dovzhenko — Ph. D. in Chemistry, Senior Researcher, Laboratory of Pharmacokinetics and Pharmacodynamics, Gause Institute of New Antibiotics (GINA), Scopus Author ID: 6602290196.

Moscow


Competing Interests:

none



A. V. Golyshkin
Gause Institute of New Antibiotics (GINA)
Russian Federation

Alexandr V. Golyshkin — Junior Researcher at the Laboratory of Biosynthesis of Biologically Active Substances. Scopus Author ID: 56406498400.

Moscow


Competing Interests:

none



N. R. Almyasheva
Gause Institute of New Antibiotics (GINA)
Russian Federation

Nailya R. Almyasheva — Junior Researcher at the Laboratory of Biosynthesis of Biologically Active Substances, Scopus Author ID: 56406547700.

Moscow


Competing Interests:

none



Yu. A. Portnoy
Gause Institute of New Antibiotics (GINA)
Russian Federation

Yury A. Portnoy — Senior Researcher at the Laboratory of Pharmacokinetics and Pharmacodynamics, Scopus Author ID: 6602151494.

Moscow


Competing Interests:

none



References

1. Yakovlev S. V., Suvorova M. P., Bykov A. O. Infections Caused by Carbapenem-Resistant Enterobacterales: Epidemiology, Clinical Significance, and Possibilities for Antibiotic Therapy Optimization. Antibiot Khimioter = Antibiotics and Chemotherapy. 2020; 65 (5–6): 41–69. doi: https://doi.org/10.37489/0235-2990-2020-65-5-6-41-69. (in Russian)

2. Kuz'menkov A.Jyu., Vinogradova A. G., Trushin I. V., Ejdel'shtejn M. V., Avramenko A. A., Dekhnich A. V., Kozlov R. S. AMRmap — sistema monitoringa antibiotikorezistentnosti v Rossii. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2021; 23 (2): 198–204. doi: https: //doi.org/10.36488/cmac.2021.2.198-204. (in Russian)

3. Kozlov R.S, Stetsjyuk O. U., Andreeva I. V. Tseftazidim–avibaktam: novye «pravila igry» protiv polirezistentnykh gramotritsatel'nykh bakterij. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2018; 20 (1): 24–34. doi: https: //doi.org/10.36488/cmac.2018.1.24-34.

4. Mauri C., Maraolo A. E., Di Bella S., Luzzaro F., Principe L. The revival of aztreonam in combination with avibactam against metallo-beta-lactamase-producing gram-negatives: a systematic review of in vitro studies and clinical cases. Antibiotics (Basel). 2021; 20; 10 (8): 1012. doi: 10.3390/antibiotics10081012.

5. Zhanel G. G., Lawrence C. K., Adam H., Schweizer F., Zelenitsky S., Zhanel M., Lagacé-Wiens P. R. S., Walkty A., Denisuik A., Golden A., Gin A. S., Hoban D. J., Lynch J. P. 3rd, Karlowsky J. A. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-beta-Lactamase Inhibitor Combinations. Drugs. 2018; 78 (1): 65–98. doi: 10.1007/s40265-017-0851-9.

6. Yahav D., Giske C. G., Grāmatniece A., Abodakpi H., Tam V. H., Leibovici L. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020; 11;34 (1): e00115–20. doi: 10.1128/CMR.00115-20.

7. Hobson C. A., Pierrat G., Tenaillon O., Bonacorsi S., Bercot B., Jaouen E., Jacquier H., Birgy A. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob Agents Chemother. 2022; 20;66 (9): e0044722. doi: 10.1128/aac.00447-22.

8. Gaibani P., Como F., Bussini L., Lazzarotto T., Amadesi S., Bartoletti M., Viale P., Ambretti S. Dynamic evolution of imipenem/relebactam resistance in a KPC-producing Klebsiella pneumoniae from a single patient during ceftazidime/avibactam-based treatments. J Antimicrob Chemother 2022; 77 (6): 1570–1577. doi: 10.1093/jac/dkac100.

9. Gaibani P., Lombardo D., Bussini L., Bovo F., Munari B., Giannella M., Bartoletti M.,Viale P., Lazzarotto T., Ambretti S. Epidemiology of meropenem/vaborbactam resistance in KPC-producing Klebsiella pneumoniae causing bloodstream infections in Northern Italy. 2018; Antibiotics (Basel). 2021; 10: 536. doi: 10.3390/antibiotics10050536.

10. Natsional'nyj standart Rossijskoj Federatsii GOST R ISO 20776-1-2022. Issledovanie chuvstvitel'nosti infektsionnykh agentov, i otsenka funktsional'nykh kharakteristik izdelij dlya issledovaniya chuvstvitel'nosti k antimikrobnym sredstvam. Chast' 1. Referentnyj metod mikrorazvedenij v bul'one dlya laboratornogo issledovaniya aktivnosti antimikrobnykh agentov po otnoshenijyu k bystrorastushchim aerobnym bakteriyam, vyzyvajyushchim infektsionnye zabolevaniya. (in Russian)

11. European Committee on Antimicrobial Susceptibility Testing — EUCAST [Internet]. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.1. 2023. [cited 2024 July 30]. Available from: http://www.eucast.org/clinical_breakpoints

12. Dong Y., Zhao X., Domagala J., Drlica K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob Agents Chemother. 1999; 43: 1756–1758. doi: 10.1128/AAC.43.7.1756.

13. Patent № RU 2787393. Golikova M. V., Firsov A. A., Strukova E. N., Portnoj Ju. A. Modifitsirovannaya dinamicheskaya sistema in vitro (m-ds) dlya farmakokinetiko-farmakodinamicheskikh issledovanij s antimikrobnymi preparatami. Opubl. 09.01.2023. (in Russian)

14. Nicolau D. P., Siew L., Armstrong J., Li J., Edeki T., Learoyd M., Das S. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J Antimicrob Chemother. 2015; 70 (10): 2862–2869. doi: 10.1093/jac/dkv170.

15. Wenzler E., Gotfried M. H., Loutit J. S., Durso S., Griffith D. C., Dudley M. N., Rodvold K. A. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects. Antimicrob Agents Chemother. 2015; 59 (12): 7232–7239. doi: 10.1128/AAC.01713-15.

16. Strukova E. N., Golikova M. V., Dovzhenko S. A., Kobrin M. B., Zinner S. H. Pharmacodynamics of doripenem alone and in combination with relebactam in an in vitro hollow-fiber dynamic model: emergence of resistance of carbapenemase-producing Klebsiella pneumoniae and the inoculum effect. Antibiotics. 2023; 12 (12): 1705. doi: 10.3390/antibiotics12121705.

17. European Committee on Antimicrobial Susceptibility Testing — EUCAST [Internet] [cited 2024 July 30]. Available from https: //www.eucast.org/publications-and-documents/rd

18. Mouton J. W., Brown D. F., Apfalter P., Cantón R., Giske C. G., Ivanova M., MacGowan A. P., Rodloff A., Soussy C. J., Steinbakk M., Kahlmeter G. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect. 2012; 18 (3): E37–45. doi: 10.1111/j.1469-0691.2011.03752.x.

19. Tam V. H., Abodakpi H., Wang W., Ledesma K. R., Merlau P. R., Chan K., Altman R., Tran T. T., Nikolaou M., Sofian A. K. Optimizing pharmacokinetics/pharmacodynamics of β-lactam/ β-lactamase inhibitor combinations against high inocula of ESBL-producing bacteria. J Antimicrob Chemother. 2021; 76: 179–183. doi: 10.1093/jac/dkaa412.

20. Tam V. H., Merlau P. R., Hudson C. S., Kline E. G., Eales B. M., Smith J., Sofian A. K., Shields R. K. Optimal ceftazidime/avibactam dosing exposureagainst KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2022; 28; 77 (11): 3130–3137. doi: 10.1093/jac/dkac294.

21. Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003. 52 (1). 11–17. doi: 10.1093/jac/dkg269.

22. Firsov A. A., Alieva K. N., Strukova E. N., Golikova M. V., Portnoy Y. A., Dovzhenko S. A., Kobrin M. B., Romanov A. V., Edelstein M. V., Zinner S. H. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to linezolid in an in vitro dynamic model. J Antimicrob Chemother. 2017; 1; 72 (11): 3100–3107. doi: 10.1093/jac/dkx249.

23. Firsov A. A., Vostrov S. N., Lubenko I. Y., Drlica K., Portnoy Y. A., Zinner S. H. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother. 200; 47 (5): 1604–1613. doi: 10.1128/AAC.47.5.1604-1613.2003.

24. Firsov A. A., Smirnova M. V., Lubenko I. Y., Vostrov S. N., Portnoy Y. A., Zinner S. H. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model. J Antimicrob Chemother. 2006; 58 (6): 1185–1192. doi: 10.1093/jac/dkl387.

25. Alieva K. N., Golikova M. V., Dovzhenko S. A., Kobrin M. B., Strukova E. N., Ageevets V. A., Avdeeva A. A., Sulian O. S., Sidorenko S. V., Zinner S. H. Testing the mutant selection window hypothesis with meropenem: In vitro model study with OXA-48-producing Klebsiella pneumoniae. PLoS One. 2023; 4; 18 (8): e0288660. doi: 10.1371/journal.pone.0288660.

26. Zhang B., Gu X., Li Y., Li X., Gu M., Zhang N., Shen X., Ding H. In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model. BMC Vet Res. 2014; 16 (10): 297. doi: 10.1186/s12917-014-0297-1.

27. Li X., Wang L., Zhang X. J., Yang Y., Gong W. T., Xu B., Zhu Y. Q., Liu W. Evaluation of meropenem regimens suppressing emergence of resistance in Acinetobacter baumannii with human simulated exposure in an in vitro intravenous-infusion hollow-fiber infection model. Antimicrob Agents Chemother. 2014; 58 (11): 6773–6781. doi: 10.1128/AAC.03505-14.

28. Feng K., Jia N., Zhu P., Sy S., Liu Y., Dong D., Zhu S., Zhang J., Liu Y., Martins F. S., Gong H., Lv Z., Yu M., Sy S. K. B., Zhu Y. Aztreonam/avibactam effect on pharmacodynamic indices for mutant selection of Escherichia coli and Klebsiella pneumoniae harbouring serine and New Delhi metallo-beta-lactamases. J Antimicrob Chemother. 2021; 11; 76 (11): 2875–2883. doi: 10.1093/jac/dkab292.


Review

For citations:


Strukova E.N., Golikova M.V., Kobrin M.B., Dovzhenko S.A., Golyshkin A.V., Almyasheva N.R., Portnoy Yu.A. The Effectiveness of the Combined Use of Meropenem and Avibactam Against Carbapenemase-Producing Klebsiella pneumoniae Strains in an in vitro Dynamic Model. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(11-12):32-40. (In Russ.) https://doi.org/10.37489/0235-2990-2024-69-11-12-32-40. EDN: MOTBYZ

Views: 783


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)