Effect of Chemotherapy on Vascularization of Cervical Cancer
https://doi.org/10.37489/0235-2990-2025-70-3-4-94-104
Abstract
Standard chemotherapy suppresses angiogenesis and reduces vascularization of cervical cancer (CC). A more pronounced response to treatment was detected in more vascularized and oxygenated tumors, but it follows that suppression of angiogenesis during initial courses of chemotherapy may lead to a decrease in the response after subsequent treatment. Preservation of the numerical vessel density during therapy can serve as a prognostic factor for an insufficiently good response to treatment. Methods of molecular targeted therapy of CC are aimed primarily at inhibiting angiogenesis and restoring the normal functioning of the immune system fighting the tumor. The addition of targeted antiangiogenic therapy drugs to standard cytostaticagents for the treatment of patients with persistent, recurrent, or metastatic CC increases progression-free survival and overall life expectancy, but the side effects of such therapy are often severe and sometimes fatal. The main complications recorded are neutropenia, central and peripheral arterial and venous thrombosis, the formation of intestinal and vaginal fistulas. Resistance to targeted drugs develops very quickly, followed by restoration and even an increase in vascularization due to the progression of tumor cell hypoxia and the inclusion of angiogenesis pathways without the VEGF participation. It should be noted that suppression of angiogenesis during any method of treating cervical cancer increases hypoxia of the remaining tumor, which contributes to increased production and release of proangiogenic cytokines, such as VEGF, and the progression of angiogenesis.
About the Authors
A. O. ShumeikinaRussian Federation
Anastasia O. Shumeikina — Junior Researcher, Institute of Oncology and Neurosurgery
Novosibirsk
Competing Interests:
The authors declare that there are no obvious or potential conflicts of interest related to the publication of this article.
S. E. Krasilnikov
Russian Federation
Sergey E. Krasilnikov — D. Sc. in Medicine, Professor, Director
Novosibirsk
Competing Interests:
The authors declare that there are no obvious or potential conflicts of interest related to the publication of this article.
B. V. Sheplev
Russian Federation
Boris V. Sheplev — D. Sc. in Medicine, Rector
Novosibirsk
Competing Interests:
The authors declare that there are no obvious or potential conflicts of interest related to the publication of this article.
I. V. Kachesov
Russian Federation
Igor V. Kachesov — Ph. D. in Medicine, Head of the Pathological Anatomy Department
Novosibirsk
Competing Interests:
The authors declare that there are no obvious or potential conflicts of interest related to the publication of this article.
I. V. Maiborodin
Russian Federation
Igor V. Maiborodin — D. Sc. in Medicine, Professor, Chief Researcher at the Laboratory of Health Management Technologies, Center of New Medical Technologies; Vice-Rector for Science of Private educational institution of higher education
Novosibirsk
Competing Interests:
The authors declare that there are no obvious or potential conflicts of interest related to the publication of this article.
References
1. Delli Carpini J., Karam A. K., Montgomery L. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis. 2010; 13 (1): 43–58. doi: 10.1007/s10456-010-9163-3.
2. Senrung A., Tripathi T., Aggarwal N., Janjua D., Yadav J., Chaudhary A., Chhokar A., Joshi U., Bharti A. C. Phytochemicals Showing Antiangiogenic Effect in pre-clinical models and their potential as an alternative to existing therapeutics. Curr Top Med Chem. 2024; 24 (4): 259–300. doi: 10.2174/0115680266264349231016094456.
3. Darge H. F., Andrgie A. T., Hanurry E. Y., Birhan Y. S., Mekonnen T. W., Chou H. Y., Hsu W. H., Lai J. Y., Lin S. Y., Tsai H. C. Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm. 2019; 572: 118799. doi: 10.1016/j.ijpharm.2019.118799.
4. Chu S. C., Yu C.C., Hsu L. S. et al. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Mol Pharmacol. 2014; 86 (6): 609–623. doi: 10.1124/mol.114.094037.
5. Sarwar F., Ashhad S., Vimal A., Vishvakarma R. Small molecule inhibitors of the VEGF and tyrosine kinase for the treatment of cervical cancer. Med Oncol. 2024; 41 (8): 199. doi: 10.1007/s12032-024-02446-x.
6. Ueda M., Terai Y., Kumagai K., Ueki K., Okamoto Y., Ueki M. Correlation between tumor angiogenesis and expression of thymidine phosphorylase, and patient outcome in uterine cervical carcinoma. Hum Pathol. 1999; 30 (11): 1389–1394. doi: 10.1016/s0046-8177(99)90074-6.
7. Ueda M., Ueki K., Kumagai K., Terai Y., Okamoto Y., Ueki M., Otsuki Y. Apoptosis and tumor angiogenesis in cervical cancer after preoperative chemotherapy. Cancer Res. 1998; 58 (11): 2343–2346. URL: https://aacrjournals.org/cancerres/article/58/11/2343/504138/Apoptosis-and-TumorAngiogenesis-in-Cervical.
8. Zhang J., Zheng A., Chai D., Chu Y. X. An exploration of the expression of MK and MVD in cervical cancer tissues before and after NACT. Sichuan Da Xue Xue Bao Yi Xue Ban. 2008; 39 (6): 950–952, 984. URL: https://pubmed.ncbi.nlm.nih.gov/19253833.
9. Chen C. A., Cheng W. F., Lee C. N., Su YN, Hsieh C. Y., Hsieh F. J. Power Doppler vascularity index for predicting the response of neoadjuvant chemotherapy in cervical carcinoma. Acta Obstet Gynecol Scand. 2004; 83 (6): 591–597. doi: 10.1111/j.0001-6349.2004.00522.x.
10. Randall L. M., Monk B. J., Darcy K. M., Tian C., Burger R. A., Liao S. Y., Peters W. A., Stock R. J., Fruehauf J. P. Markers of angiogenesis in highrisk, early-stage cervical cancer: A Gynecologic Oncology Group study. Gynecol Oncol. 2009; 112 (3): 583–589. doi: 10.1016/j.ygyno.2008.11.013.
11. Klyuchko K. O., Gargin V. V. Influence of neoadjuvant chemoradiotherapy for locally advanced cervical cancer. Pol Merkur Lekarski. 2020; 48 (288): 406–409.
12. Choy H., Milas L. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst. 2003; 95 (19): 1440– 1452. doi: 10.1093/jnci/djg058.
13. Miyahara Y., Yoshida S., Motoyama S., Tateiwa Y., Hamana S., Maruo T. Effect of cis-diammine dichloroplatinum on vascular endothelial growth factor expression in uterine cervical carcinoma. Eur J Gynaecol Oncol. 2004; 25 (1): 33–39.
14. Peng J., Zhao J., Zhao Y., Wu P, Gou L., Fu S, Chen P., Lu Y, Yang L. HeLa Cell-Derived Paclitaxel-Loaded Microparticles Efficiently Inhibit the Growth of Cervical Carcinoma. Int J Nanomedicine. 2020; 15: 6409–6420. doi: 10.2147/IJN.S246659.
15. Yu Y., Xu S., You H., Zhang Y., Yang B., Sun X., Yang L., Chen Y., Fu S., Wu J. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Deliv. 2017; 24 (1): 75–82. doi: 10.1080/10717544.2016.1230902.
16. Wang Z., Lv J., Zhang T. Combination of IL-24 and cisplatin inhibits angiogenesis and lymphangiogenesis of cervical cancer xenografts in a nude mouse model by inhibiting VEGF, VEGF-C and PDGF-B. Oncol Rep. 2015; 33 (5): 2468–2476. doi: 10.3892/or.2015.3853.
17. Krill L. S., Tewari K. S. Integration of bevacizumab with chemotherapy doublets for advanced cervical cancer. Expert Opin Pharmacother. 2015; 16 (5): 675–683. doi: 10.1517/14656566.2015.1010511.
18. Nagy V. M., Buiga R., Brie I., Todor N., Tudoran O., Ordeanu C., Virág P., Tarta O., Rus M., Bălăcescu O. Expression of VEGF, VEGFR, EGFR, COX-2 and MVD in cervical carcinoma, in relation with the response to radiochemotherapy. Rom J Morphol Embryol. 2011; 52 (1): 53–59.
19. Skliarenko J. V., Lunt S. J., Gordon M. L., Vitkin A., Milosevic M., Hill R. P. Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumors. Cancer Res. 2006; 66 (4): 2074–2080. doi: 10.1158/0008-5472.CAN-05-2046.
20. Lunt S. J., Fyles A., Hill R. P., Milosevic M. Interstitial fluid pressure in tumors: therapeutic barrier and biomarker of angiogenesis. Future Oncol. 2008; 4 (6): 793–802. doi: 10.2217/14796694.4.6.793.
21. Minion L. E., Tewari K. S. Cervical cancer — State of the science: From angiogenesis blockade to checkpoint inhibition. Gynecol Oncol. 2018; 148 (3): 609–621. doi: 10.1016/j.ygyno.2018.01.009.
22. Marquina G., Manzano A., Casado A. Targeted Agents in Cervical Cancer: Beyond Bevacizumab. Curr Oncol Rep. 2018; 20 (5): 40. doi: 10.1007/s11912-018-0680-3.
23. Minion L. E., Tewari K. S. The safety and efficacy of bevacizumab in the treatment of patients with recurrent or metastatic cervical cancer. Expert Rev Anticancer Ther. 2017; 17 (3): 191–198. doi: 10.1080/14737140.2016.1246187.
24. Garcia J., Hurwitz H. I., Sandler A. B., Miles D., Coleman R. L., Deurloo R., Chinot O. L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020; 86: 102017. doi: 10.1016/j.ctrv.2020.102017.
25. Palavalli Parsons L. H., Roane B., Manders D. B., Richardson D. L., Kehoe S. M., Carlson M., Miller D. S., Lea J. S. Hypoalbuminemia is a Predictive Factor for Fistula Formation in Recurrent Cervical Cancer. Am J Clin Oncol. 2018; 41 (10): 933–937. doi: 10.1097/COC.0000000000000403.
26. Eskander R. N., Tewari K. S. Development of bevacizumab in advanced cervical cancer: pharmacodynamic modeling, survival impact and toxicology. Future Oncol. 2015; 11 (6): 909–922. doi: 10.2217/fon.14.276.
27. Chellappan D. K., Leng K. H., Jia L. J., Aziz N. A.BA, Hoong W. C., Qian Y. C., Ling F. Y., Wei G. S., Ying T., Chellian J., Gupta G., Dua K. The role of bevacizumab on tumour angiogenesis and in the management of gynaecological cancers: A review. Biomed Pharmacother. 2018; 102: 1127–1144. doi: 10.1016/j.biopha.2018.03.061.
28. Penson R. T., Huang H. Q., Wenzel L. B. et al. Bevacizumab for advanced cervical cancer: patient-reported outcomes of a randomised, phase 3 trial (NRG Oncology-Gynecologic Oncology Group protocol 240). Lancet Oncol. 2015; 16 (3): 301–311. doi: 10.1016/S1470-2045(15)70004-5.
29. Godoy-Ortiz A., Plata Y., Alcaide J., Galeote A., Pajares B., Saez E., Alba E., Sánchez-Muñoz A. Bevacizumab for recurrent, persistent or advanced cervical cancer: reproducibility of GOG 240 study results in «real world» patients. Clin Transl Oncol. 2018; 20 (7): 922–927. doi: 10.1007/s12094-017-1808-x.
30. He X., Liu J., Xiao L., Zhao M., Su T., Liu T., Han G., Wang Y. Cisplatin-based chemotherapy with or without bevacizumab for Chinese postmenopausal women with advanced cervical cancer: a retrospective observational study. BMC Cancer. 2020; 20 (1): 381. doi: 10.1186/s12885-020-06854-w.
31. Saijo Y., Furumoto H., Yoshida K., Nishimura M., Irahara M. Clinical Significance of Vascular Endothelial Growth Factor Expression and Microvessel Density in Invasive Cervical Cancer. J Med Invest. 2015; 62 (3-4): 154–160. doi: 10.2152/jmi.62.154.
32. Paluri R., Madan A., Li P., Jones B., Saleh M., Jerome M., Miley D., Keef J., Robert F. Phase 1b trial of nintedanib in combination with bevacizumab in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2019; 83 (3): 551–559. doi: 10.1007/s00280-018-3761-y.
33. Schutz F. A., Choueiri T. K., Sternberg C. N. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit Rev Oncol Hematol. 2011; 77 (3): 163–171. doi: 10.1016/j.critrevonc.2010.02.012.
34. Coquan E., Brachet P. E., Licaj I., Leconte A., Castera M., Lequesne J., Meriaux E., Bonnet I., Lelaidier A., Clarisse B., Joly F. CABOCOL-01 trial: a single-arm phase II study assessing safety and efficacy of Cabozantinib for advanced or metastatic cervical carcinoma after platinum treatment failure. BMC Cancer. 2021; 21 (1): 1054. doi: 10.1186/s12885-021-08758-9.
35. Vergote I., Van Nieuwenhuysen E., Casado A., Laenen A., Lorusso D., Braicu E. I., Guerra-Alia E., Zola P., Wimberger P., Debruyne P. R., Falcó E., Ferrero A., Muallem M. Z., Kerger J., García-Martinez E., Pignata S., Sehouli J., Van Gorp T., Gennigens C., Rubio M. J. Randomized phase II BGOG/ENGOT-cx1 study of paclitaxel-carboplatin with or without nintedanib in first-line recurrent or advanced cervical cancer. Gynecol Oncol. 2023; 174: 80–88. doi: 10.1016/j.ygyno.2023.04.028.
36. Yang H., Chen M., Mei Z., Xie C., Zhou Y., Qiu H. Effectiveness and prognostic factors of apatinib treatment in patients with recurrent or advanced cervical carcinoma: A retrospective study. Cancer Med. 2021; 10 (13): 4282–4290. doi: 10.1002/cam4.3966.
37. Zhang L., Chen L., Yu H. Phase I. I. study of apatinib, a novel tyrosine kinase inhibitor targeting tumor angiogenesis, as second-line treatment for recurrent or advanced cervical cancer patients. Invest New Drugs. 2020; 38 (4): 1186–1191. doi: 10.1007/s10637-019-00858-5.
38. Zhou C., Taylor S., Tugwood J., Simpson K., Jayson G. C., Symonds P., Paul J., Davidson S., Carty K., McCartney E, Rai D., Dive C., West C. Dynamics of circulating vascular endothelial growth factor-A predict benefit from antiangiogenic cediranib in metastatic or recurrent cervical cancer patients. Br J Clin Pharmacol. 2019; 85 (8): 1781–1789. doi: 10.1111/bcp.13965.
39. Milosevic M. F., Townsley C. A., Chaudary N., Clarke B., Pintilie M., Fan S., Glicksman R., Haider M., Kim S., MacKay H, Yeung I., Hill R. P., Fyles A., Oza A. M. Sorafenib increases tumor hypoxia in cervical cancer patients treated with radiation therapy: results of a phase 1 clinical study. Int J Radiat Oncol Biol Phys. 2016; 94 (1): 111–117. doi: 10.1016/j.ijrobp.2015.09.009.
40. Shi Y., Chen J., Shi B., Liu A. Cost-effectiveness analysis of pembrolizumab for treatment of US patients with persistent, recurrent, or metastatic cervical cancer. Gynecol Oncol. 2022; 164 (2): 379–385. doi: 10.1016/j.ygyno.2021.12.007.
41. Mishra S., Sahu A., Kaur A., Kaur M., Kumar J., Wal P. Recent development in the search for epidermal growth factor receptor (EGFR) inhibitors based on the indole pharmacophore. Curr Top Med Chem. 2024; 24 (7): 581–613. doi: 10.2174/0115680266264206231020111820.
42. Huang Z., Zhao B., Qin Z., Li Y., Wang T., Zhou W., Zheng J., Yang S., Shi Y., Fan Y., Xiang R. Novel dual inhibitors targeting CDK4 and VEGFR2 synergistically suppressed cancer progression and angiogenesis. Eur J Med Chem. 2019; 181: 111541. doi: 10.1016/j.ejmech.2019.07.044.
43. Tekisogullari K., Topcul M. The effects of sunitinib malate used in targeted therapy on the proliferation of HeLa cells in vitro. J BUON. 2013; 18 (1): 253–260. URL: https://www.jbuon.com/archive/18-1-253.pdf.
44. Sano D., Matsumoto F., Valdecanas D. R., Zhao M., Molkentine D. P., Takahashi Y., Hanna E. Y., Papadimitrakopoulou V., Heymach J., Milas L., Myers J. N. Vandetanib restores head and neck squamous cell carcinoma cells' sensitivity to cisplatin and radiation in vivo and in vitro. Clin Cancer Res. 2011; 17 (7): 1815–1827. doi: 10.1158/1078-0432.CCR-10-2120.
45. Nie M. F., Liu F. Y., Tao G. S. Treatment of cervical carcinoma in mice by injecting monoclonal antibody of epidermal growth factor receptor into solid tumor. Hunan Yi Ke Da Xue Xue Bao. 2001; 26 (5): 421–424.
46. Yang J., Chen S., Huang X., Han J., Wang Q., Shi D., Cheng R., Gao G., Yang X. Growth suppression of cervical carcinoma by pigment epithelium-derived factor via anti-angiogenesis. Cancer Biol Ther. 2010; 9 (12): 967–974. doi: 10.4161/cbt.9.12.11635
47. Schmid B. C., Oehler M. K. Improvements in progression-free and overall survival due to the use of anti-angiogenic agents in gynecologic cancers. Curr Treat Options Oncol. 2015; 16 (1): 318. doi: 10.1007/s11864-014-0318-0.
48. Yang P., Chen N., Yang D., Crane J., Huang B., Dong R., Yi X., Guo J., Cai J., Wang Z. Cervical cancer cell-derived angiopoietins promote tumor progression. Tumour Biol. 2017; 39 (7): 1010428317711658. doi: 10.1177/1010428317711658.
49. Chuai Y., Rizzuto I., Zhang X., Li Y., Dai G., Otter S. J., Bharathan R., Stewart A., Wang A. Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer. Cochrane Database Syst Rev. 2021; 3 (3): CD013348. doi: 10.1002/14651858.CD013348.pub2.
50. Yu J., Cao X. F., Zheng Y., Zhao R. C., Yan L. Q., Zhao L., Wang J. W. AntiVEGF Therapy with Bevacizumab — limited cardiovascular toxicity. Asian Pac J Cancer Prev. 2014; 15 (24): 10769–10772. doi: 10.7314/apjcp.2014.15.24.10769.
51. Kiuru M., Schwartz M., Magro C. Cutaneous thrombogenic vasculopathy associated with bevacizumab therapy. Dermatol Online J. 2014; 20 (6): 13030/qt41f655g9.
Review
For citations:
Shumeikina A.O., Krasilnikov S.E., Sheplev B.V., Kachesov I.V., Maiborodin I.V. Effect of Chemotherapy on Vascularization of Cervical Cancer. Antibiot Khimioter = Antibiotics and Chemotherapy. 2025;70(3-4):94-104. (In Russ.) https://doi.org/10.37489/0235-2990-2025-70-3-4-94-104