Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Biological Cost of Helicobacter pylori Rifampicin Resistance

Abstract

The frequence of mutations in the rifampicin resistant (RIFr) clones of microorganisms after adaption to ofloxacin and metronidazole was investigated to estimate the biological cost of H.pylori rifampicin (RIF) resistance. Mutations in rpoB gene responsible for RIF resistance of H.pylori were shown to have biological cost and be compensated by additional mutations in the microorganism genome. Comparison of the mutation frequency in the presence of metroniazole demonstrated that the acquired resistance to RIF resulted in changing of the adaptative capacity of the RIFr clones of H.pylori to metronidazole. Thus, a significant increase of the mutation frequency (> 700 times) in one of the RIFr clones and a broad spectrum of the mutations responsible for resistance to metronidazole vs. the H.pylori initial strain 26695 were observed. The findings could be evident of the fact that the adaptation to RIF changed the properties of the cell on one hand in such a way that its mutation capacity increased and that the target selection on the other hand revealed hypermutable cells, likely usual for the bacterial population.

About the Authors

K. T. Momynaliev
Research Institute of Physico-Chemical Medicine, Moscow
Russian Federation


V. V. Chelysheva
Research Institute of Physico-Chemical Medicine, Moscow
Russian Federation


T. A. Akopian
Research Institute of Physico-Chemical Medicine, Moscow
Russian Federation


O. V. Selezneva
Research Institute of Physico-Chemical Medicine, Moscow
Russian Federation


V. M. Govorun
Research Institute of Physico-Chemical Medicine, Moscow
Russian Federation


References

1. Guillemot D. Antibiotic use in humans and bacterial resistance. Curr Opin Microbiol 1999; 2: 494—498.

2. Wichelhaus T.A., Böddinghaus B., Besier S. et al. Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46: 3381—3385.

3. Austin D. J., Kristinsson K. G., Anderson R. M. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci USA. 1999; 96: 1152—1156.

4. Seppala H., Klaukka T., Vuopio-Varkila J. et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. New Engl J Med 1997; 337: 441—446.

5. Hawkey P. M. Molecular epidemiology of clinically significant antibiotic resistance genes. Br J Pharmacol 2008; 153: 406—413.

6. Stefani S., Agodi A. Molecular epidemiology of antibiotic resistance. Int J Antimicrob Agents 2000; 13: 143—153.

7. O'Sullivan D. M., McHugh T. D., Gillespie S. H. Analysis of rpoB and pncA mutations in the published literature: an insight into the role of oxidative stress in Mycobacterium tuberculosis evolution? J Antimicrob Chemother 2005. 55: 674—679.

8. O'Neill A. J., Huovinen T., Fishwick C. W., Chopra I. Molecular genetic and structural modelling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother 2006; 50: 298—309.

9. Pfister P., Corti N., Hobbie S. et al. 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A — G. Proc Natl Acad Sci USA 2005; 102: 5180—5185.

10. Wolter N., Smith A. M., Farrell D. J. et al. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother 2005; 49: 3554—3557.

11. Nilsson A. I., Zorzet A., Kanth A. et al. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc Natl Acad Sci USA 2006; 103: 6976—6981.

12. Heep M., Beck D., Bayerdorffer E., Lehn N. Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob Agents Chemother 1999; 43: 1497—1499.

13. Moore R. A., Beckthold B., Wong S. et al. Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin resistant mutants of Helicobacter pylori. Antimicrob. Agents Chemother. 1995. 39: 107—111.

14. Goodwin A., Kersulyte D., Sisson G. et al. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen insensitive NADPH nitroreductase. Mol Microbiol 1998; 28: 383—393.

15. Sisson G., Jeong J.Y. , Goodwin A. et al. Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H.pylori rdxA (nitroreductase) gene. J Bacteriol 2000; 182: 5091—5096.

16. Ge Z., Taylor D. E. Rapid polymerase chain reaction screening of Helicobacter pylori chromosomal point mutations. Helicobacter 1997; 2: 127—131.

17. Ge Wang, Trevor J. M. Wilson, Qin Jiang, Diane E. Taylor. Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob Agents Chemother 2001; 45: 727—733.

18. Campbell E. A., Korzheva N., Mustaev A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 2001; 104: 901—912.

19. Jeong J. Y., Mukhopadhyay A. K., Akada J. K. et al. Roles of FrxA and RdxA nitroreductases of Helicobacter pylori in susceptibility and resistance to metronidazole. J Bacteriol 2001; 183: 5155—5162.

20. Jeong J. Y., Mukhopadhyay A.K., Dailidiene D. et al. Sequential inactivation of rdxA (HP0954) and frxA (HP0642) nitroreductase genes cause moderate and high-level metronidazole resistance in Helicobacter pylori. J Bacteriol 2000; 182: 5082—5090.

21. Albert T. J., Dailidiene D., Dailide G. et al. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nature Methods 2005; 2: 951—953.


Review

For citations:


Momynaliev K.T., Chelysheva V.V., Akopian T.A., Selezneva O.V., Govorun V.M. Biological Cost of Helicobacter pylori Rifampicin Resistance. Antibiot Khimioter = Antibiotics and Chemotherapy. 2009;54(9-10):10-15. (In Russ.)

Views: 262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)