Preview

Антибиотики и Химиотерапия

Расширенный поиск

Устойчивость актиномицетов-продуцентов к собственным антибиотикам

Об авторах

В. Г. Булгакова
Московский государственный университет им. М. В. Ломоносова
Россия


Т. И. Орлова
Московский государственный университет им. М. В. Ломоносова
Россия


А. Н. Полин
Московский государственный университет им. М. В. Ломоносова
Россия


Список литературы

1. Demain A. L. How do antibiotic-producing micro-organisms avoid suicide? Ann. NY Acad. Sci 1974; 235: 601-612.

2. Cundliff E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 1989; 43: 207-233.

3. Федоренко В. А. Генетические механизмы устойчивости актино-мицетов к аминогликозидным антибиотикам. Антибиотики и хи-миотер 1999; 44: 9: 29-36.

4. Hopwood D. A. How do antibiotic-producing bacteria ensure their selfresistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 2007; 63: 4: 937-940.

5. Davies J. Origins and evolution of antibiotic resistance. Microbiologia 1996; 12: 1: 9-16.

6. Миндлин С. З.,Петрова М. А.,Басс И. А.,Горленко Ж. М. Происхождение, эволюция и миграция генов лекарственной устойчивости. Генетика 2006; 42: 11: 1495-1511.

7. Martinez J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008; 321: 5887: 365-367.

8. Woo P. C., Lau S. K., Huang Y., Yuen К. Y. Genomic evidence for antibiotic resistance genes of actinomycetes as origins of antibiotic resistance genes in pathogenic bacteria simply because actinomycetes are more ancestral than pathogenic bacteria. Med.Hypotheses 2006; 67: 6: 1297-1304.

9. Gourmelen A., Blondelet-Rouault M.-H., Pernodet J-L. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens. Antimicrob Agents Chemother 1998, 42: 10: 2612-2619.

10. Zhao L., Beyer N. J., Borisova S. A., Liu H. W. Beta-glucosylation as a part of self-resistance mechanism in methymycin/picromycin producing strain Streptomyces venezuelae. Biochemistry 2003; 42: 50: 14794-14804.

11. Lim C. K, Smith M. C., Petty J. et al. Streptomyces griseus streptomycin phosphotransferase: expression of its gene in Escherichia coli and sequence homology with other antibiotic phosphotransferases and with eukariotic protein kinases. J Gen Microbiol 1989; 135: 12: 3289-3302.

12. Lyutzkanova D., Distler J., Altenbuchner J. A spectinomycin resistance determinant from the spectinomycin producer Streptomyces flavopersicus. Microbiology 1997: 143: 7: 2135-2143.

13. Dhote V., Gupta S., Reinolds K. A. An O-phosphotransferase catalyzes phosphorylation of hygromycin A in the antibiotic-producing organism Streptomyces hygroscopicus. Antimicrob Agents Chemother 2008; 52: 10: 3580-3588.

14. Sugiyama M., Thompson C. J., Kumagai T. et al. Characterisation by molecular cloning of two genes from Streptomyces verticillius encoding resistance to bleomycin. Gene 1994; 151: 1-2: 11-16.

15. Thiara A. S., Cundliffe E. Analysis of two capreomycin-resistance determinants from Streptomyces capreolus and characterization of the action of their products. Gene 1995; 167: 1-2: 121-126.

16. Izard T. Structural basis for chloramphenicol tolerance in Streptomyces venezuelae by chloramphenicol phosphotransferase activity. Protein Sci 2001; 10: 8: 1508-1513.

17. Mansouri K., Piepersberg W. Genetics of streptomycin production in Streptomyces griseus: nucleotide sequence of five genes, strFGHIK, including a phosphatase gene. Mol Gen Genet 1991; 228: 3: 459-469.

18. Menendez N., Nur-e-Alam M., Brana A. F. et al. Tailoring modification of deoxysugars during biosynthesis of antitumor drug chromomycin A3 by Streptomyces griseus ssp. griseus. Mol Microbiol 2004; 53: 3: 903-915.

19. Quiros L. M., Aquirrezabalaga I., Olano C. et al. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Ibid 1998; 28: 6: 1177-1185.

20. Olano C., Rodriquez A. M., Mendes C., Salas J. A. A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Ibid 1995; 16: 2: 333-343.

21. Pernodet J.-.L, Gourmelen A., Blondelet-Rouault M.-H., Cundliff E. üispensable ribosomal resistance to spiramycin conferred by srmA in the spiramycin producer Streptomyces ambofaciens. Microbiology 1999; 145: 9: 2355-2364.

22. Vajic S., Anastasov N., Vasiljevic B. The kgvB gene, encoding ribosomal RNA methylase from Streptomyces tenebrarius, is autogenously regulated. Arch Microbiol 2004; 182: 6: 475-481.

23. Cundliffe E. Resistance to macrolides and lincosamides in Streptomyces lividans and to aminoglycosides in Micromonospora purpurea. Gene 1992; 115: 1-2: 75-84.

24. Kojic M., Topisirovic L., Vasiljevic B. Cloning and characterization of an aminoglycoside resistance determinant from Micromonospora zionensis. J Bacteriol 1992; 174: 23: 7868-7872.

25. Ohta T.,Hasegawa M. Analysis of the self-defense gene (fmrO) of a fortimicin A (astromicin) producer, Micromonospora olivasterospora: comparison with other aminoglycoside-resistance-encoding genes. Gene 1993; 127: 1: 63-69.

26. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995; 39: 3: 577-585.

27. Zalacain M., CundliffE. Methylation of 23S ribosomal RNA due to carB, an antibiotic-resistance determinant from the carbomycin producer, Streptomyces thermotolerans. Eur J Biochem 1990; 1189: 1: 67-72.

28. Calcutt M. J., Cundliff E. Cloning of a lincosamide resistance determinant from Streptomyces caelestis, the producer of celesticetin, and characterization of the resistance mechanism. J Bacteriol 1990; 172: 8: 4710-4704.

29. Pernodet J-L, Fish S., Blondelet-Rouault M-H., Cundliff E. The macrolide-lincosamide-streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans. Antimicrob Agents Chemother 1996; 40: 3: 581-585.

30. Weitnauer G., Gaisser S., Treezer A. et al. An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tu57. Ibid 2001; 45: 3: 690-695.

31. Treede I., Jacobsen L, Kirpekar F. et al. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol Microbiol 2003; 49: 2: 309-318.

32. Liu M., Kirpekar F., Van Wezel G.P., Douthwaite S. The tylosin resistance gene trlB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Ibid 2000; 37: 4: 811-820.

33. Lebars I., Hasson C., Yoshizawa S. et al. Recognition elements in rRNA for the tylosin resistance methyltransferase RimA (II). J Mol Biol 2007; 372: 2: 525-534.

34. Douthwaite S., Jakobsen I., Yoshizawa S., Fourmy D. Interaction of the tylosin-resistance methyltransferaseRlmA II at its rRNA target differs from the orthologue RimA I. Ibid 2008; 378: 5: 969-975.

35. Wilson V. T. W., Cundliffe E. Molecular analysis of tlrB, an antibiotic-resistance gene from tylosin-producing Streptomyces fradiae, and discovery of a novel resistance mechanism. J. Antibiot 1999; 52: 3: 288-296.

36. Memili E., Weisblum B. Essential role endogenously synthesized tylosin for induction of ermSF in Streptomyces fradiae. Antimicrob Agents Chemother 1997; 41: 5: 1203-1205.

37. Parmeggiani A., Nissen P. Elongation factor Tu-targeted antibiotics: four different structures, two mechanisms of action. FEBS Lett 2006; 580: 19: 4576-4581.

38. Cappellano C., Monti F., Sosio M. et al. Natural kirromycin resistance of elongation factor Tu from the kirrothricin producer Streptomyces cinnamoneus. Microbiology 1997; 143: 2: 617-624.

39. Olsthoorn-Tieleman L. N., Palstra R. J., van Wezel G. P. Elongation factor Tu3 from the kirromycin producer Streptomyces ramocissimus is resistant to three classes of EF-Tu-specific inhibitors. J Bacteriol 2007; 189: 9: 3581-3590.

40. Thiara A. S., Cundliffe E. Interplay of novobiocin-resistant and -sensitive DNA gyrase activities in self-protection of the novobiocin producer, Streptomyces sphaeroides. Gene 1989; 81: 1: 65-72.

41. Roza J., Blanco M. G., Hardisson C., Salas J. A. Self-resistance in actinomycetes producing inhibitors of RNA polymerase. J Antibiot 1986; 39: 4: 609-612.

42. Егоров А. М.,Сазыкин Ю. О. Резистентность к гликопептидным антибиотикам. Новые горизонты и проблемы. Антибиотики и хи-миотер 2001; 46: 6: 3-5.

43. Reynolds P. E., Courvalin P. Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob Agents Chemother 2005; 49: 1: 21-25.

44. Marshall C. G., Lessard I. A. D., Park I.-S., Wright G. D. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Ibid 1998; 42: 9: 2215-2220.

45. Beltrametti B., Consolandi A., Carran L. et al. Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptido-glycan. Ibid 2007; 51: 4: 1135-1141.

46. Егоров А. М., Сазыкин Ю. О. Реальность нового направления комбинированной химиотерапии. Скрининг ингибиторов эффлюксных помп. Антибиотики и химиотер 2001; 46: 4: 3-5.

47. Locher K. P. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 2009; 364: 1514: 239-245.

48. Mendez C., Salas J. A. The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 2001; 152: 3-4: 341-350.

49. Ikeno S., Yamane Y., Ohishi Y. et al. ABC transporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain. J Antibiot 2000; 53: 4: 373-384.

50. Barrasa M. I., Tercero J. A., Lacalle R. A., Jimenez A. The ardl gene from Streptomyces capreolus encodes a polypeptide of the ABC-transporters superfamily which confers resistance to the aminonucleoside antibiotic A201A. Eur J Biochem 1995; 228: 3: 562-569.

51. Stumpp T., Himbert S., Altenbuchner J. Cloning of the netropsin resistance genes from Streptomyces flavopersicus NRRL2820. J Basic Microbiol 2005; 45: 5: 355-362.

52. Dairi T., Aisaka K., Katsumata R., Hasegawa M. A self-defense gene homologous to tetracycline effluxing gene essential fom antibiotic production in Streptomyces aureofaciens. Biosci Biotechnol Biochem 1995; 59: 10: 1835-1841.

53. Tahlan K., Ahn S. K., Sing A. et al. Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 2007; 63: 4: 937-940.

54. Fernandez E., Lombo F., Mendez C., Salas J. A. An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus. Mol Gen Genet 1996; 251: 6: 692-698.

55. Kaur P., Rassell J. Biochemical coupling between the DrrA and DrrB proteins of the doxorubicin efflux pump of Streptomyces peucetius. J Biol Chem 1998; 273: 28: 17933-17939.

56. August P. R., Rahn J. A., Flickinger M. C., Sherman D. H. Inducible synthesis of the mitomycin C resistance gene product from Streptomyces lavendulae. Gene 1996; 175: 1-2: 261-267.

57. Sheldon P. J., Johnson D. A., August P. R. et al. Characterization of mitomycin-binding drug resistance mechanism from the producing organism, Streptomyces lavendulae. J Bacteriol 1997; 179: 5: 1796-1804.

58. Sheldon P. J., Mao Y., Sherman D. H. Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system. J Bacteriol 1999; 181: 8: 2507-2512.

59. Martin J.F., Liras P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 1989; 43: 173-206.

60. Nodwell J. R. Novel links between antibiotic resistance and antibiotic production. J Bacteriol 2007; 189: 10: 3683-3685.

61. Kim K. R., Kim T. J., Suh J. W. The gene cluster for spectinomycin biosynthesis and the aminoglycoside-resistance function of Streptomyces spectabilis. Curr Microbiol 2008; 57: 4: 371-374.

62. Alderson G., Ritchie D. A., Cappellano C. et al. Physiology and genetics of antibiotic production and resistance. Res Microbiol 1993; 144: 8: 665-672.

63. Hu H., Ochi K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutation. Appl Environ Microbiol 2001; 67: 4: 1885-1892.

64. Wang G., Hosaka T.,Ochi K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutation. Appl Environ Microbiol 2008; 74: 9: 2834-2840.

65. Hong H. J., Hutchings M. I., Neu J. M. et al. Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 2004; 52: 4: 1107-1121.

66. D Costa V. M., McGrann K. M., Hughes D. W., Wright G. D. Sampling the antibiotic resistome. Science 2006; 311: 5759: 374-377.


Рецензия

Для цитирования:


Булгакова В.Г., Орлова Т.И., Полин А.Н. Устойчивость актиномицетов-продуцентов к собственным антибиотикам. Антибиотики и Химиотерапия. 2010;55(1-2):42-49.

For citation:


Bulgakova V.G., Orlova T.I., Polin A.N. Resistance of Antibiotic-Producing Actinomycetes to Their Own Antibiotics. Antibiot Khimioter = Antibiotics and Chemotherapy. 2010;55(1-2):42-49. (In Russ.)

Просмотров: 454


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)