Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Activity of Carbohydrate Metabolism Enzymes in Streptomyces imbricatus, Producing Imbricin in Controlled Biosynthesis of the Antibiotic

Abstract

Changes in the fermentative activity of Streptomyces imbricatus under the conditions of stimulated biosynthesis of imbricin with addition of a crude endoregulator to the medium were studied. The activity of the two main enzymes of the glycolysis, i. e. phosphofructokinase and fructose-1,6-diphosphate aldolase (aldolase) was determined and the functioning of the pentozophosphate pathway was estimated by the activity of glucose-6-phosphate dehydrogenase and NADP-specific glutamate dehydrogenase. Under the conditions of the endoregulation the increase of the imbricin production was observed when the level of the glucose catabolism either by the glycolytic pathway or by the pentozophosphate pathway was comparatively high, thus providing the antibiotic biosynthesis with the required precursors and reducing equivalents.

About the Authors

O. V. Topkova
St. Petersburg State Chemico-Pharmaceutical Academy
Russian Federation


E. P. Yakovleva
St. Petersburg State Chemico-Pharmaceutical Academy
Russian Federation


V. A. Kolodyaznaya
St. Petersburg State Chemico-Pharmaceutical Academy
Russian Federation


References

1. Топкова О. В., Яковлева Е. П., Яскович Г. А. Изучение биосинтеза неполиенового антибиотика имбрицина на среде, содержащей фильтрат культуральной жидкости продуцента. Антибиотики и химиотер 2000; 45: 10. 5-9.

2. Хохлов А. С. Низкомолекулярные микробные ауторегуляторы. М.: 1988; 272.

3. Gräfe U. et al. Modification by genetic changes of the pleiotropic interference of butyrolactone-type autoregulators with differentiation of Streptomycesgriseus. Ztschr Allg Mikrobiol 1984; 24: 515-523.

4. Воронина О. И. NAD- и КАО(Р)-гликогидролазы микроорганизмов и их роль в развитии продуцентов. Успех соврем биол 1985; 99: 81-93.

5. Сухаревич М. Э. Регуляция биосинтеза имбрицина и механизм его действия на грибы: дис.. кацд. биол. наук: 03.00.23. СПб.: 1997; 156.

6. Топкова О. В. и др. Выбор способа выделения ауторегулятора из фильтрата культуральной жидкости Streptomyces imbricatus. Естеств. тех науки 2006; 3: 65-69.

7. Pinto P. V. C., Dreal P. A., Kaplan A. Aldolase. Colorimetric determination. Clin Chem 1969; 15: 339-345.

8. Логинова Л. Г., Гужева Э. П. Дегидрогеназная активность термотолерантных дрожжей. Микробиол 1961; 30: 5: 917-920.

9. Пех К., Треси М. В. Биохимические методы анализа растений. М.: 1960; 116.

10. Плешков Б. П. Практикум по биохимии растений. М.: 1965; 255.

11. Iwasaki S., Fukushima K., Namicoshi M., Sasaki K. Studies on macro-cyclic lactone antibiotics. V. The structures of azalomycin F3A and F5A. Chem Farm Bull 1982; 30; 4006-4021.

12. Шенин Ю. Д. Неполиеновые противогрибковые макролидные антибиотики. Антибиотики и химиотер 1991; 36: 10: 50-53.

13. Martin J. F. Biosynthesis of polyene macrolide antibiotics. Annu Rev Microbiol 1977; 31: 1: 13-38.


Review

For citations:


Topkova O.V., Yakovleva E.P., Kolodyaznaya V.A. Activity of Carbohydrate Metabolism Enzymes in Streptomyces imbricatus, Producing Imbricin in Controlled Biosynthesis of the Antibiotic. Antibiot Khimioter = Antibiotics and Chemotherapy. 2010;55(3-4):3-7. (In Russ.)

Views: 375


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)