Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Genetic Environments of blaCTX-M Genes Located on Conjugative Plasmids of Enterobacteriaceae Nosocomial Isolates Collected in Russia within 2003-2007

Abstract

The study showed that blaCTX-M genes were present in the genomes of 71% of сephаlosporin resistant Enterobacteriaceae nosocomial isolates (n=833) collected in Russian hospitals within 2003-2007, including 91% of E.coli, 90% of Klebsiella spp., 38% of Enterobacter spp., 31 % of Citrobacter spp. (n=9), and 36% of the other Enterobacteriaceae species. The genes belonging to the following subtypes (clusters) were identified: blaCΎX_M_1 (529 blaCTX_M_15 genes; 25 blaCTX_M_3 genes; 1 blaCTX_M_22 gene, 1 blaCTX-M-23 gene and 1 blaCTX-M-34 gene); blaCTX-M-2 (1 blaCTX-M-2 gene and 4 blaCTX-M-5 genes), and blaCTX-M-9 (2 blaCTX-M_9 genes, and 28 blaCTX_M_14 genes). It was shown that blaCTX-M genes were located on high-molecular weight (60-160 bp) conjugative plasmids belonging mainly to the incompatibility groups IncF, IncL/M and IncA/C (blaCTX-M-15 gene); IncL/M (blaCTX-M-3 gene); and IncF, IncL/M and IncIl-ly (CTX-M-14 gene). The gene environments of blaCTX-M genes were shown specific for the subtype of the genes. A mobile genetic element lSEcp1 (in some cases deleted or inserted by IS26, IS1, IS10, resTn2, or resTn3 sequences, in direct or reverse position) were detected upstream of blaCTX-M-3, blaCTX-M-14, and blaCTX-M-15 genes. A special characteristic was the sequence between ISEcpl and blaCTX-M gene: 48 bp for blaCTX-M-15 (except 1 E.coli isolate having such a sequence deleted by 3 bp); 127 bp for blaCTX-M-3; 42 bp for blaCTX-M-14. Downstream of blaCTX-M and blaCTX-M-15 genes in the major bacterial isolates orf477 mucA and Aorf477-AmucA sequences were detected respectively. Two isolates had additional Aorf3 insertion inside of Aorf477-AmucA sequence. Insertion sequence IS903 (intact or deleted) was detected downstream of blaCTX-M-14 gene. Unlike the others, blaCTX-M-2 and blaCTX-M-9 genes were located inside of IS CR1 mobile element, downstream of class 1 integron and orf513 sequence.

About the Authors

N. K. Fursova
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


S. D. Pryamchuk
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


I. V. Abaev
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


YU. N. Kovalev
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


N. A. Shishkova
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


E. I. Pecherskikh
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


O. V. Korobova
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


E. I. Astashkin
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


D. M. Pachkunov
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


E. A. Svetoch
State Research Centre for Applied Microbiology and Biotechnology, Obolensk
Russian Federation


S. V. Sidorenko
Research Institute for Children' Infections, St.Petersburg
Russian Federation


References

1. Nicaido H. Multidrug resistance in bacteria. Annu Rev Biochem 2009; 78: 119-146.

2. Canton R., Coque T.M. The CTX-M /З-lactamase pandemic. Curr Opinion Microbiol 2006; 9: 466-475.

3. http://www.lahey.org/Studies/other.asp#table1

4. Rossolini G. M., D'Andrea M. M., Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 2008; 14: 1: 33-41.

5. Coque T. M., Novais Â., Carattoli A. et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum /З-lacta-mase CTX-M-15. Emerging Infectious Diseases 2008; 14: 2: 195-200.

6. Rodriguez-Bano J, Pascual A. Clinical significance of extended-spectrum beta-lactamases. Expert Rev Antiinfect Ther 2008; 6: 5: 671-683.

7. Hawkey P.M., Jones A.M. The changing epidemiology of resistance. J Antimicrob Chemother 2009; 64: 1: i3-10.

8. Barlow M., Fatollahi J., Salverda M. Evidence for recombination among the alleles encoding TEM and SHV /З-lactamases. J Antimicrob Chemother 2009; 63: 256-259.

9. Gazoli M., TzelepiE., Sidorenko S. V., Tzouvelekis L. S. Sequence of the gene encoding a plasmid-mediated cefotaxime-hydrolyzing class A /З-lactamase (CTX-M-4): involvement of serine 237 in cephalosporin hydrolysis. Antimicrob Agents Chemother 1998; 42: 5: 1259-1262.

10. Edelstein M., Pimkin M., Palagin I. et al. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 2003; 47: 12: 3724-3732.

11. Fursova N., Abaev I., Pryamchuk S. et al. Variability of Inc group of conjugative plasmids and CTX-M gene environments in Enterobacteriaceae nosocomial strains isolated from Russia. Clin Microbiol Infect 2008; 15: 4: 38-39.

12. NCCLS/CLSI. 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th ed. Document M7-A5. Clinical and Laboratory Standards Institute, Wayne, PA.

13. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/ Disk_test_documents/ EUCAST_breakpoints_v1.0_20091221.pdf

14. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 1981; 145: 1365-1373.

15. Carattoli A., Bertini A., Villa L. et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Meth 2005; 63: 219-228.

16. Eckert C., Gautier V., Arlet G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother 2006; 57: 14-23.

17. Saladin M., Cao V. T., Lambert T. et al. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 2002; 209: 2: 161-168.

18. Machado E., Canton R., Baquero F. et al. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother 2005; 49: 5: 1823-1829.

19. Skurnik D., Le Menach A., Zurakowski D. et al. Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. Antimicrob Agents Chemother 2005; 49: 7: 3062-3065.

20. Livermore D. M., Canton R., Gniadkowski M. et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007; 59: 2: 165-174.

21. Coque T. M., Baquero F., Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance 2008; 13: 47: 1-11.

22. Poirel L., Naas T., Nordmann P. Genetic support of extended-spectrum /З-lactamases. Clin Microbiol Infect. 2008; 14: Suppl. 1: 75-81.


Review

For citations:


Fursova N.K., Pryamchuk S.D., Abaev I.V., Kovalev Yu.N., Shishkova N.A., Pecherskikh E.I., Korobova O.V., Astashkin E.I., Pachkunov D.M., Svetoch E.A., Sidorenko S.V. Genetic Environments of blaCTX-M Genes Located on Conjugative Plasmids of Enterobacteriaceae Nosocomial Isolates Collected in Russia within 2003-2007. Antibiot Khimioter = Antibiotics and Chemotherapy. 2010;55(11-12):3-10. (In Russ.)

Views: 422


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)