Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Microbial Models in Screening of Inhibitors of Sterol Biosynthesis

Abstract

On the base of previously developed microbial models high effective scheme for screening of inhibitors of sterol biosynthesis (ISB) is proposed. It is based on cultivation of halophilic bacteria Halobacterium salinarum (former Halobacterium halobium), possessing mevalonate pathway of sterol biosynthesis, and cultivation of fungus Acremonium fusidioides (former Fusidium coccineum), that is producer of steroid antibiotic fusidin (fusidic acid), which biosynthesis has great similarity (with coincidence of its initial steps till squalene formation) to cholesterol biosynthesis in human organism. In H.salinarum model ISB are revealed as compounds that inhibit test-culture growth, whereas in A.fusidioides test-system they are revealed as compounds that strongly reduce fusidin production without any visible influence on producer's growth. Mevalonate that is one of the crucial intermediates of sterol biosynthesis remove inhibition induced by many microbial metabolites that is the evidence of their action at early stages of sterol biosynthetic pathway, including HMG-CoA reductase step. Both test-systems are developed as micromethod and could be easily mechanized due to miniaturization of microbiological procedures, cultivation in sterile 96-well plates and usage of automatic micropipettes and dispensers. Effectiveness of both test-systems, as well as their sensitiveness, laboriousness and ability to give false-positive or false-negative results in ISB screening work is compared. The proposed scheme of screening of ISB includes microbial models at early steps of screening procedures and Hep G2 test-system at the late step. The preliminary screening of microbial metabolites possessing antifungal activity at initial step is compulsory. Miniaturization and mechanization of microbial processes and purification of producers' culture broth with micro- and ultrafiltration are under consideration as well.

Keywords


About the Author

A. S. Trenin
Gause Institute of New Antibiotics, Russian Academy of Medical Sciences
Russian Federation


References

1. Тренин А.С., Катруха Г.С. Антибиотики - ингибиторы биосинтеза холестерина. Хим.-фарм. журн. 1997; 31: 9: 5-16.

2. Тренин А.С. Вторичные метаболиты грибов - ингибиторы биосинтеза стеролов. Прикл. биохим. микробиол. 1998; 34: 2: 131-138.

3. Trapani L., Segatto M., Pallottini V. Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic «power station». World J Hepatol 2012; 4: 6: 184-190.

4. Garcia-Ruiz C., Morales A., Fernandez-Checa J.C. Statins and protein prenylation in cancer cell biology and therapy. Anticancer Agents Med Chem 2012; 12: 4: 303-315.

5. Seiki S., Frishman W.H. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. Cardiol Rev 2009; 17: 2: 70-76.

6. Belter A., Skupinska M., Giel-Pietraszuk M. et al. Squalene monooxygenase - a target for hypercholesterolemic therapy. Biol Chem 2011; 392: 12: 1053-1075.

7. Kathiravan M.K., Salake A.B., Chothe A.S. et al. The biology and chemistry of antifungal agents: a review. Bioorg Med Chem. 2012; 20: 19: 5678-5698.

8. Hatori H., Sato B., Sato I. et al. FR901512, a novel HMG-CoA reductase inhibitor produced by an agonomycetous fungus No. 14919. II. Taxonomy of the producing organism, fermentation, isolation and physico-chemical properties. J Antibiot (Tokyo) 2004; 57: 4: 264-270.

9. Donadio S., Maffioli S., Monciardini P. et al. Antibiotic discovery in the twenty first century: current trends and future perspectives. J. Antibiot (Tokyo) 2010; 63: 8: 423-430.

10. Endo A., Monacolin K. А new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot (Tokyo) 1980; 33: 3: 334-336.

11. Alberts A.W., Chen J., Kuron G. et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 1980; 77: 7: 3957-3961.

12. Iwasaki S., Omura S. Search for protein farnesyltransferase inhibitors of microbial origin: our strategy and results as well as the results obtained by other groups. J Antibiot (Tokyo) 2007; 60: 1: 1-12.

13. Brötz-Oesterhelt H., Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol 2010; 5: 10: 1553-1579.

14. Zanella F., Lorens J.B., Link W. High content screening: seeing is believing. Trends Biotechnol 2010; 28: 5: 237-245.

15. Сазыкин Ю.О., Бибикова М.В., Иванов В.П. и др. Технология скрининга вторичных микробных метаболитов: к эволюции методологии. Антибиотики и химиотер. 2002; 47: 10: 25-31.

16. Koehn F.E. High impact technologies for natural products screening. Prog Drug Res 2008; 65: 177-210.

17. Moy T.I., Conery A.L., Larkins-Ford J. et al. High throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 2009; 4: 7: 527-533.

18. Бибикова М.В., Грамматикова H.Э., Тертов В.В. и др. Отбор природных иммуносупрессоров по способности к модификации синтеза стеролов клетками гепатоцитов. Антибиотики и химиотер. 2003; 48: 8: 3-6.

19. Чмель Я.В., Бибикова М.В., Спиридонова И.А. и др. Скрининг природных соединений с гиполипидемической активностью. Антибиотики и химиотер. 2004; 49: 8-9: 8-12.

20. DeVito J.A., Mills J.A., Liu V.G. et al. An array of target-specific screening strains for antibacterial discovery. Nat Biotechnol 2002; 20: 5: 478-483.

21. Борисова Н.А., Чмель Я.В., Бибикова М.В., Катлинский А.В. Антимикробная активность природных гиполипидемических соединений. Антибиотики и химиотер. 2005: 50: 12: 12-15.

22. Бибикова М.В., Грамматикова Н.Э., Катлинский А.В. и др. Влияние природных гиполипидемических соединений на формирование биоплёнок штаммами рода Pseudomonas. Антибиотики и химиотер. 2009; 54: 1-2: 10-13.

23. Hu Y., Shamaei-Tousi A., Liu Y., Coates A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS One 2010; 5: 7: e11818.

24. Тренин А.С., Терехова Л.П., Толстым И.В. и др. Отбор микробных вторичных метаболитов - ингибиторов биосинтеза холестерина с помощью культуры клеток гепатобластомы G2. Антибиотики и химиотер. 2003; 48: 1: 3-8.

25. Тренин А.С. Микробная тест-система для поиска ингибиторов биосинтеза стеролов. Антибиотики и химиотер. 2013; 58: 3-4: 3-9.

26. Тренин А.С. Микробная модель Halobacterium salinarum для поиска ингибиторов биосинтеза стеролов. Антибиотики и химиотер. 2013; 58: 5-6: 3-10.

27. Терехова Л.П., Тренин А.С., Озерская С.М. и др. Образование аскофуранона культурой гриба Paecilomyces variotii Bainier 199. Микробиология 1997; 66: 5: 611-615.

28. Тренин А.С., Толстых И.В., Терехова Л.П. и др. Гиполипидемическое действие антибиотика 86/88 (энниатина В) в культуре клеток гепатобластомы G2. Антибиотики и химиотер. 2000; 45: 4: 6-9.

29. Терехова Л.П., Галатенко О.А., Тренин А.С. и др. Выделение и изучение антибиотика ИНА-1132 (хлоротрицина), образуемого штаммом Streptomyces baarnensis. Антибиотики и химиотер. 2008; 53: 7-8: 3-7.

30. Shashkov A.S., Tsvetkov D.E., Lapchinskaya O.A. et al. Structure, 1H and 13C NMR spectra, and biological activity of the antibiotic INA-1278 related to irumamycin and produced by the experimental Streptomyces sp. strain No. 1278. Russ Chem Bull Int Ed 2011; 60: 11: 2412-2417.

31. Duetz W.A., Witholt B. Effectiveness of orbital shaking for the aeration of suspended bacterial cultures in square-deepwell microtiter plates. Biochem Eng J 2001; 7: 113-115.

32. Genilloud O., Gonzalez I., Salazar O. et al. Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 2011; 38: 3: 375-389.

33. Meletiadis J., Meis J.F., Mouton J.W., Verweij P.E. Analysis of growth characteristics of filamentous fungi in different nutrient media. J Clin Microbiol 2001; 39: 2: 478-484.

34. Joubert A., Calmes B., Berruyer R. et al. Laser nephelometry applied in an automated microplate system to study filamentous fungus growth. Biotechniques 2010; 48: 5: 399-404.

35. Тренин А.С., Дудник Ю.В. Твердофазная система РНК-зависимой ДНК-полимеразы в поиске антибиотиков - потенциальных ингибиторов ВИЧ. Антибиотики и химиотер. 2005; 50: 10-11: 4-12.

36. Endo A., Kuroda M., Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot (Tokyo) 1976; 29: 12: 1346-1348.

37. Kumagai H., Tomoda H., Omura S. Method of search for microbial inhibitors of mevalonate biosynthesis using animal cells. J Antibiot (Tokyo) 1990; 43: 4: 397-402.

38. Ikeura R., Murakawa S., Endo A. Growth inhibition of yeast by compactin (ML-236B) analogues. J Antibiot (Tokyo) 1988; 41: 8: 1148-1150.

39. Бибикова М.В., Чмель Я.В., Спиридонова И.А., Катлинский A.B. Влияние ловастатина на рост и образование эргостерола культурой Tolypocladium inflatum 106. Антибиотики и химиотер. 2004; 49: 4: 3-6.

40. Баранова Н.А., Крейер В.Г., Ландау Н.С., Егоров Н.С. Метаболиты микромицетов - ингибиторы роста и биосинтеза стеринов у дрожжей. Антибиотики и химиотер. 2002; 47: 1: 3-6.

41. Чмель Я.В., Бибикова М.В., Долгова Г.В. и др. Оценка эффективности отобранных природных гиполипидемических веществ на модели гиперхолестеринемии у кроликов. Антибиотики и химиотер. 2004; 49: 11: 3-6.

42. Тренин А.С., Двигун Е.А., Соболева Н.Ю. и др. Антимикробная и гиполипидемическая активность штаммов Lentinus edodes и Ganoderma lucidum. Иммунопатология, аллергология, инфектология: Труды междисципл. микол. форума: Грибные биотехнологии в медицине и промышленности. 2010; 1: 270.

43. Trenin A.S., Lapchinskaya O.A., Pogozheva V.V. et al. Antifungal activity of natural compounds produced by mutant strains of Amycolatopsis orientalis subsp. eremomycini and Streptoallefeichus cremeus subsp. tobramycini. Abstr 7th Int. Congress «Biotechnology: State of the Art and prospects of development». М.: 2013; 1: 74.


Review

For citations:


Trenin A.S. Microbial Models in Screening of Inhibitors of Sterol Biosynthesis. Antibiot Khimioter = Antibiotics and Chemotherapy. 2013;58(7-8):3-11. (In Russ.)

Views: 380


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)