Preview

Антибиотики и Химиотерапия

Расширенный поиск

Действие антибиотиков как сигнальных молекул

Полный текст:

Аннотация

Ранее предполагалось, что в природных условиях почвенные микроорганизмы продуцируют антибиотики только для подавления роста конкурентов. В настоящее время показано, что в субингибигорных концентрациях антибиотики выполняют роль сигнальных молекул в качестве средства коммуникации в микробной популяции. Антибиотики как сигнальные молекулы модулируют транскрипцию генов и регулируют их экспрессию. Субингибиторные концентрации антибиотиков могут вызывать фенотипические и генотипические изменения у микроорганизмов. Подобные транскрипционные изменения зависят от взаимодействия антибиотиков с такими макромолекулярными рецепторами, как рибосомы и РНК-полимераза. Действие антибиотиков как сигнальных молекул и кворум-сенсинг система являются регуляторными механизмами у микроорганизмов. Показано влияние антибиотиков как сигнальных молекул на систему кворум-сенсинга.

Об авторах

В. Г. Булгакова
Московский государственный университет им. М.В. Ломоносова
Россия


К. А. Виноградова
Московский государственный университет им. М.В. Ломоносова
Россия


Т. И. Орлова
Московский государственный университет им. М.В. Ломоносова
Россия


П. А. Кожевин
Московский государственный университет им. М.В. Ломоносова
Россия


А. Н. Полин
Московский государственный университет им. М.В. Ломоносова
Россия


Список литературы

1. Davies J., Spiegelman G.B., Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 2006; 9: 5: 445-453.

2. Calabrese E.J., Baldwin L.A. Defining hormesis. Hum Exp Toxicol 2002; 21: 2: 91-97.

3. Yim G., Wang H.H., Davies J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 2007; 362: 1483: 1195-1200.

4. Fajardo A., Martinez J.L. Antibiotics as signals that trigger bacterial responses. Curr Opin Microbiol 2008; 11: 2: 161-167.

5. Aminov R.I. The role of antibiotics resistance in nature. Environ Microbiol 2009; 11: 12: 2970-2988.

6. Romero D., Traxler M.F., Lopez D., Kolter R. Antibiotics as signal molecules. Chem Rev 2011; 111: 9: 5492-5505.

7. Sengupta S., Chattopadhyay M.R., Grossart H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature. 2013; 4: 47.

8. Goh E.B., Yim G., Tsui W. et al. Transcription modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 2002; 99: 26: 17025-17030.

9. Ng W.L., Kazmierczak K.M., Robertson G.T. et al. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol 2003; 185: 1: 359-370.

10. Yim G., Wang H.H., Davies J. The truth of antibiotics. Int J Med Microbiol 2006; 296: 163-170.

11. Linares J.F., Gustafsson L., Baquero F., Martinez J.L. Antibiotics as intermicrobial signalling agents instead of weapons. Proc Natl Acad Sci USA 2006; 103: 51: 19484-19489.

12. Dufour N., Rao R.P. Secondary metabolites and other small molecules as intercellular pathogenic signals. FEMS Microbiol Lett 2010; 314: 1: 10-17.

13. Fugua C., Winans S.C., Greenberg E.R. Census and concensus in bacterial systems: the LuxR-LuxL family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 1996; 50: 727-751.

14. Bassler B.L. How bacteria talk to each other: regulation of gene expression by quorum-sensing. Curr Opin Microbiol 1999; 2: 6: 582-587.

15. Miller M.B., Bassler B.L. Quorum-sensing in bacteria. Annu Rev Microbiol 2001; 55: 165-199.

16. Грузина В.Д. Коммуникативные сигналы бактерий. Антибиотики и химиотер. 2003; 48: 10: 32-39.

17. Олескин А.В., Кировская Т.А. Популяционно-коммуникативное направление в микробиологии. Микробиология 2006; 75: 4: 440-445.

18. Хмель И.А. Quorum-sensing регуляция экспрессии генов: Микробиология 2006; 75: 4: 457-464.

19. Ng W.L., Bassler B.L. Bacterial quorum-sensing network architectures. Annu Rev Genet 2009; 43: 197-222.

20. Pappas K.M., Weingart C.L., Winans S.C. Chemical communication in proteobacteria: biochemical and structural synthases and receptors required for intercellular signalling. Mol Microbiol 2004; 53: 3: 755-769.

21. Zhu P., Li M. Recent progresses on AI-2 bacterial quorum-sensing inhibitors. Curr Med Chem 2012; 19: 2: 174-186.

22. Fugua C., Parsek M.R., Greenberg E.R. Regulation ofgene expression by cell- to-cell communication: acyl-homoserine lactone quorum-sensing. Annu Rev Genet 2001; 35: 439-468.

23. Decho A.W., Frey R., Ferry J.L. Chemical challenges to bacterial AHL signalling in the environment. Chem. Rev 2011; 111: 1: 86-99.

24. Novick R.P., Geisinger E. Quorum-sensing in staphylococci. Annu Rev Genet 2008; 42: 541-564.

25. Хохлов А.С., Товарова И.И., Борисова Л.Н. и др. А-фактор, ответственный за биосинтез стрептомицина мутантными штаммами Actinomyces streptomycini. Доклады АН СССР 1967: 177: 1: 232-235.

26. Bassler B.L., Wright M., Silverman M.R. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 1994; 13: 2: 273-286.

27. Chen X., Schauder S., Potier N. et al. Structural identificatioh of a bacterial quorum-sensing signal containing boron. Nature 2002; 415: 6871: 545-549.

28. Federle M.J. Autoinducer-2-based chemical communication in bacreria: complexities of interspecies signalling. Contrib Microbiol 2009; 16: 18-32.

29. Antunes L.C., Ferreira R.B., Buckner M.M., Finlay B.B. Quorum-sensing in bacterial virulence. Microbiology 2010; 156: 8: 2271-2282.

30. Deziel E., Lepine F., Milot S. et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 2004; 101: 5: 1339-1344.

31. Heeb S., Fletcher M.P., Chhabra S.R. et al. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Revs 2011; 35: 2: 247-274.

32. Ahmed N.A., Petersen F.C., Scheie A.A. AI-LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics. Antimicrob Agents Chemother 2009; 53: 10: 4258-4263.

33. Garske L.A., Beatson S.A., Leech A.J. et al. Sub-inhibitory concentration of ceftazidime and tobramycin reduce the quorum-sensing signals of Pseudomonas aeruginosa. Pathology 2004; 36: 6: 571-575.

34. Babić F., Venturi V., Maravić-Vlahovicek G. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum-sensing system in a Pseudomonas aeruginosa environmental isolate. BMC Infect Dis 2010; 10: 148.

35. Liu Z., Wang W., Zhu Y. et al. Antibiotics at subinhibitory concentrations improve the quorum-sensing behavior of Chromobacterium violaceum. FEMS Microbiol Lett 2013; 341: 1: 37-44.

36. Tateda K., Comte R., Pechere J.-C. et al. Azithromycin inhibits quorum-sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001; 45: 6: 1930-1933.

37. Nalca Y., Jänsch L., Bredenbruch F. et al. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 2006; 50: 5: 1680-1688.

38. Hoffmann N., Lee B., Hentzer M. et al. Azithromycin blocks quorum-sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P.aeruginosa lung infection in Cftrmice. Antimicrob Agents Chemother 2007; 51: 10: 3677-3687.

39. Skindersoe M.E., Alhede M., Phipps R. et al. Effect of antibiotics on quorum-sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52: 10: 3648-3663.

40. Bala A., Kumar R., Harjai K. Inhibition of quorum-sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections. J Med Microbiol 2011; 60: 3: 300-306.

41. Rogers P.D., Liu T.T., Barker K.S. et al. Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J Antimicrob Chemother 2007; 59: 4: 616-626.

42. Römling U., Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 2012; 272: 6: 541-561.

43. Tanaka M., Hasegawa T., Okamoto A. et al. Effect of antibiotics on group A Streptococcus exoprotein production analyzed by two-dimensional gel electrophoresis. Antimicrob Agents Chemother 2005; 49: 1: 88-96.

44. Kuroda H., Kuroda M., Cui L., Hiramatsu K. Subinhibitory concentrations of β-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS two-component system. FEMS Microbiol Lett 2007; 268: 1: 98-105.

45. Bagge N., Schuster M., Hentzer M. et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48: 4: 1175-1187.

46. Mizukane R., Hirakata Y., Kaku M. et al. Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 1994; 38: 3: 528-533.

47. Kaplan J.B. Antibiotic-induced biofilm formation. Int J Artif Organs 2011; 34: 9: 737-751.

48. Hoffman L.R., D’Argenio D.A., MacCoss M.J. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436: 7054: 1171-1175.

49. Boehm A., Steiner S., Zaehriner F. et al. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol 2009; 72: 6: 1500-1516.

50. Kaplan J.B., Jabbouri S., Sadovskaya I. Extracellular DNA-dependent biofilm formation by Staphylococcus epidermidis RP62A in response to subminimal inhibitory concentrations of antibiotics. Res Microbiol 2011; 162: 5: 535-541.

51. Wang Q., Sun F.-J., Liu Y. et al. Enhancement of biofilm formation by subinhibitory concentrations of macrollides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis. Antimicrob Agents Chemother 2010; 54: 6: 2707-2711.

52. Subrt N., Mesak L.R., Davies J. Modulation of virulence gene expression by cell wall active antibiotics in Staphylococcus aureus. J Antimicrob Chemother 2011; 66: 5: 979-984.

53. Ichimiya T., Takeoka K., Hiramatsu K. et al. The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy; 1996: 42: 3: 186-191.

54. Howe R.A., Spencer R.C. Macrolides for the treatment of Pseudomonas aeruginosa infections? J Antimicrob Chemother 1997; 40: 2: 153-155.

55. Kobayashi T., Tateda K., Matsumoto T. et al. Macrolide-treated Pseudomonas aeruginosa induces paradoxical host responses in the lungs of mice and a high mortality rate. J Antimicrob Chemother 2002; 50: 1: 59-66.

56. Blázques J., Couce A., Rodrígues-Beltrán J., Rodrígues-Rojas A. Antimicrobials as promoters of genetic variation. Curr Opin Microbiol 2012; 15: 5: 561-569.

57. Jeters R.T., Wang G-R., Moon K. et al. Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides transposon CTnDOT. J Bacteriol 2009; 191: 20: 6374-6382.

58. Song B., Wang G.R., Shoemaker N.B., Salyers A.A. An unexspected effect of tetracycline concentration: growth phase-associated excision of the Bacteroides mobilizable transposon NBU1. 2009; 191: 3: 1078-1082.

59. Bahl M.I., Sørensen S.J., Hansen L.N., Licht T.R. Effect of tetracycline on transfer and establishment of tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl Environ Microbiol 2004; 70: 2: 758-764.

60. Gillespie S.H., Basu S., Dickens A.L. et al. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother 2005; 56: 2: 344-348.

61. Henderson-Begg S.K., Livermore D.M., Hall L.M. Effect of subinhibitory concentrations of antibiotics on mutation frequency in Streptococcus pneumoniae. J Antimicrob Chemother 2006; 57: 5: 849-854.

62. Alonso A., Campanario E., Martinez J.L. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 1999; 145: 10: 2857-2862.

63. Cortes P.R., Pinas G.E., Albarracin Orio A.G., Echenique J.R. Subinhibitory concentrations of penicillin increase the mutation rate to optochin resistance in Streptococcus pneumoniae. J Antimicrob Chemother 2008; 62: 5: 973-977.

64. Ysern P., Clerch B., Castano M et al. Induction of SOS genes in Escherichia coli and mutagenesis in Salmonella typhimurium by fluoroquinolones. Mutagenesis 1990; 5: 1: 63-66

65. Miller C., Thomsen L.E., Gaggero C. et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 2004; 305: 5690: 1629-1631.

66. Maiques E., Úbeda C., Camroy S. et al. β-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J.Bacteriol 2006; 188: 7: 2726-2729.

67. Mesak L.R., Miao V., Davies J. Effects of subinhibitory concentrations of antibiotics on SOS and DNA repair gene expression in Staphylococcus aureus. Antimicrob Agents Chemother 2008; 52: 9: 3394-3397.

68. Da Re S., Ploy M.C. Resistance acquisition via bacterial SOS response: the inductive role of antibiotics. Med Sci (Paris) 2012; 28: 2: 179-184.

69. Beaber J.W., Hochhut B., Waldor M.K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004; 427: 6969: 72-74.

70. Ubeda C., Maiques E., Knecht E. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 2005; 56: 3: 836-844.

71. Tsui W.H., Yim G., Wang H.H. et al. Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. Chem Biol 2004; 11: 9: 1307-1316.

72. Köhler T., Dumas J.-L., Van Delden C. Ribosome protection prevents azithromycin-mediated quorum-sensing modulation and stationary-phase killing of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2007; 51: 12: 4243-4248.

73. Kalia D., Merey G., Nakayama S. et al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signalling in bacteria and implication in pathogenesis. Chem Soc Rev 2013; 42: 1: 305-341.

74. LaSarre B., Federle M.J. Exploiting quorum-sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 2013; 77: 1: 73-111.


Для цитирования:


Булгакова В.Г., Виноградова К.А., Орлова Т.И., Кожевин П.А., Полин А.Н. Действие антибиотиков как сигнальных молекул. Антибиотики и Химиотерапия. 2014;59(1-2):36-43.

For citation:


Bulgakova V.G., Vinogradova K.A., Orlova T.I., Kozhevin P.A., Polin A.N. Action of Antibiotics as Signalling Molecules. Antibiotics and Chemotherapy. 2014;59(1-2):36-43. (In Russ.)

Просмотров: 32


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)