Гепатопротекторные эффекты экстрактов и полисахаридов морских водорослей
Аннотация
Об авторах
Т. И. ОрловаРоссия
В. Г. Булгакова
Россия
А. Н. Полин
Россия
Список литературы
1. Berdy J. Bioactive microbial metabolites. Personal view. J Antibiot 2005; 58: 1: 1-26.
2. Aminov R.I. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 2009; 11: 12: 2970-2988.
3. Yamaguchi A., Komori T., Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocrine Rev 2000; 21: 4: 393-411.
4. Herath K.B., Jayasuriya H., Ondeyka J.G. et al. Isolation and structures of novel fungal metabolites as chemokine receptor (CCR2) antagonists. J Antibiot 2005; 58: 4: 686-694.
5. Schreiber D., Jung M., Sandjo L.P. et al. 3’-Demethyldihydromaldoxin and dihydromaldoxin, two anti-inflammatory diaryl ethers from a Steganospora species. J Antibiot 2012; 65: 9: 473-477.
6. Rodan G.A., Martin T.J. Therapeutic approaches to bone diseases. Science 2000; 289: 1508-1514.
7. Wu X., Ding S., Ding Q. et al. A small molecule with osteogenesis-inducing activity in multipotent mesenchmal progenitor cells. J Am Chem Soc 2002; 124: 49: 14520-14521.
8. Sakamoto S., Kojima F., Igarashi M. et al. Decalpenic acid, a novel small molecule from Penicillium verruculosum CR37010, induces early osteoblastic markers in pluripotent mesenchymal cells. J Antibiot 2010; 63: 12: 703-708.
9. Fucuda T., Uchida R., Ohte S. et al. Trichocyalides A and B, new inhibitors of alkaline phosphatase activity in bone morphogenetic protein-stimulated myoblasts, prodused by Trichoderma sp. FKI-5513. J Antibiot 2012; 65: 11: 565-569.
10. Harada H., Nakata T., Hirota-Takahata Y. et al. F-16438s, novel binding inhibitors of CD44 and hyaluronic acid.I.Establishment of an assay method and biological activity. J Antibiot 2006; 59: 12: 770-776.
11. Hirota-Takahata Y., Harada H., Tanaka I. et al. F-16438s, novel binding inhibitors of CD44 and hyaluronic acid. II.Producing organism, fermentation, isolation, physico-chemical properties and structural elucidation. J Antibiot 2006; 59: 12: 777-784.
12. Hirota-Takahata Y., Harada H., Tanaka I. et al. F-19848A, a novel inhibitor of hyaluronic acid binding to cellular receptor CD44. J Antibiot 2007; 60: 10: 633-639.
13. Hosoe T., Sakai H., Ichikawa M. et al. Lepidepyrone, a new γ-pyrone derivative, from Neolentinus lepideus, inhibits hyaluronidase. J Antibiot 2007; 60: 6: 388-390.
14. Harada H., Takahashi M. CD44-Dependent intracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem 2007; 282: 8: 5597-5607.
15. Culty M., Nguyen H.A. Underhill C.B. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol 1992; 116: 4: 1055-1062.
16. Ohno H., Yoshida M., Takahashi Y., Omura S. Improvement of the productivity of elasnin, a specific elastase inhibitor by Streptomyces noboritoensis KM-2753. J Antibiot 1980; 33: 5: 474-479.
17. Wiedow O., Schroder J.M., Gregory H. et al. Elafin: an elastase-specific inhibitor of human skin. Purification, characterization and complete amino acid sequence. J Biol Chem 1990; 265: 25: 14791-14795.
18. Umesawa H., Aoyagi T., Okura A. et al. Letter: elastatinal, a new elastase inhibitor produced by actinomycetes. J Antibiot 1973; 26: 12: 787-789.
19. Okumura Y., Ogawa K., Nikai T. Elastase and elastase inhibitor from Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger. J Med Microbiol 2004; 53: 5: 351-354.
20. Yang S.-W., Mierzwa R., Terracciano J. et al. Sch 213766, a novel chemokine receptor CCR-5 inhibitor from Chaetomium globosum. J Antibiot 2007; 60: 8: 524-528.
21. Pillay D. Current patterns in the epidemiology of primary HIV drug resistance in North America and Europe. Antiviral Therapy 2004; 9: 5: 695-702.
22. Yang S.-W., Mierzwa R., Terracciano J. et al. Chemokine receptor CCR-
23. inhibitors produced by Chaetomium globosum. J Nat Prod 2006; 69: 7: 1025-1028.
24. Segeth M.P., Bonnefoy A., Bronstrup M. et al. Coniosetin, a novel tetramic acid antibiotic from Coniochaeta ellipsoidea DSM 13856. J Antibiot 2003; 56: 2: 114-122.
25. Liu D.-Z., Wang F., Yang L.-M. et al. A new cadinane sesquiterpene with significant anti-HIV-1 activity from the cultures of the basidiomycete Tyromyces chironeus. J Antibiot 2007; 60: 5: 332-334.
26. Takahashi A., Inokoshi J., Tsunoda M. et al. Actinohivin: specific amino acid residues essential for anti-HIV activity. J Antibiot 2010; 63: 11: 661-665.
27. Hoorelbeke B., Huskens D, Ferir G. et al. Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrob Agents Chemother 2010; 54: 8: 3287-3301.
28. Tanaka H., Chiba H., Inokoshi J. et al. Mechanism by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci USA 2009; 106: 37: 15633-15638.
29. Takahashi A., Inokoshi J., Hachiya A. et al. The high-mannose-type glycan binding lectin actinohivin: dimerization greatly improves anti-HIV activity. J Antibiot 2011; 64: 8: 551-557.
30. Shiomi K., Matsui R., Isozaki M. et al. Fungal phenalenones inhibit HIV-1 integrase. J Antibiot 2005; 58: 1: 65-68.
31. Rochfort S., Ford J., Ovenden S. et al. A novel aspochalasin with HIV 1 integrase inhibitory activity from Aspergillus flavipes. J Antibiot 2005; 58: 4: 279-283.
32. Liu X., Li J., Ni S. et al. A pair of sulfur-containing geldanamycin analogs,19-S-methylgeldanamycin and 4,5-dihydro-19-S-methylgeldanamycin, from Streptomyces hygroscopicus 17997. J Antibiot 2011; 64: 7: 519-522.
33. Li Y.-H., Lu Q.-N., Wang H.-Q. Geldanamycin, a ligand of heat shock protein 90, inhibits herpes simplex virus type 2 replication both in vitro and in vivo. J Antibiot 2011; 64: 12; 65: 10: 509-512.
34. Shan G.-z., Peng Z.-g., Li Y.-h. et al. A novel class of geldanamycin derivatives as HCV replication inhibitors targeting on Hsp90: synthesis, structure-activity relationships and anti-HCV activity in GS4,3 replicon cells. J Antibiot 2011; 64: 12: 177-182.
35. Yamagishi Y., Ueno M., Ueno C. et al. Anti-herpes virus activity of polyether antibiotic CP-44161 in vivo. J Antibiot 2009; 62: 2: 95-98.
36. Yamagishi Y., Ueno C., Kato A. et al. Discovery of anti-varicella zoster virus activity of polyether antibiotic CP-44161. J Antibiot 2009; 62: 2: 89-93. Nishida F., Mory Y., Isobe S. et al. Structures of deacetyl glykenins - A,B, and C, glycosidic antibiotics from Basidiomycetes sp. Tetrahedron Lett 1988; 29: 5287-5290.
37. Alexander B., Daniel J.R., Stephan B. et al. L-Ascorbic acid 6-hexadecanoate, a potent hyaluronidase inhibitor. J Biol Chem 2004; 279: 44: 45990-45997.
38. Matsuda D., Namatame I., Ohshiro T. et al. Anti-atherosclerotic activity of triacsin C, an acyl-CoA synthetase inhibitor. J Antibiot 2008; 61: 5: 318-321.
39. Namatame I., Tomoda H., Arai H. et al. Complete inhibition of mouse macrophage-derived foam cell formation by triacsin C. J Biochem 1999; 125: 2: 319-327.
40. Omura S., Tomoda H., Xu Q.M. et al. Triacsins, new inhibitors of acyl-CoA synthetase produced by Streptomyces sp. J Antibiot 1986; 39: 9: 1211-1218.
41. Yamazaki H., Kobayashi K., Matsuda D. et al. Pentacecilides, new inhibitors of lipid droplet formation in mouse macrophages, produced by Penicillium cecidicola. J Antibiot 2009; 62: 4: 195-200.
42. Ohshiro T., Matsuda D.,Kazuhiro T. et al. New verticilides, inhibitors of acyl-CoA: cholesterol acyltransferase, produced by Verticillium sp.FKI 2679. J Antibiot 2012; 65: 5: 255-262.
43. Ohshiro T., Rudel L.L., Omura S., Tomoda H. Selectivity of microbial acyl-CoA: cholesterol acyltransferase inhibitors toward isozymes J Antibiot 2007; 60: 4: 43-51.
44. Sato B., Nakajima H., Fujita T. et al. FR177391, a new anti-hyperlipidemic agent from Serratia. I. Taxonomy, fermentation, isolation, physico-chemical properties, structure elucidation and biological activities. J Antibiot 2005; 58: 10: 634-639.
45. Inami M., Kawamura I., Tsujimoto S. et al. FR177391, a new antihyperlipidemic agent from Serratia. II. Pharmacological activity of FR177391. J Antibiot 2005; 58: 10: 640-647.
46. Kobayashi M., Sato K., Yoshimura S. et al. FR177391, a new anti-hyperlipidemic agent from Serratia. III. Microbial conversion of FR177391 and synthesis of FR177 derivatives for its target protein screening by chemical genetic approaches. J Antibiot 2005; 58: 10: 648-653.
47. Yamaoka M., Sato K., Kobayashi M. et al. FR177391, a new anti-hyperlipidemic agent from Serratia. IV. Target identification and validation by chemical genetic approaches. J Antibiot 2005; 58: 10: 654-652.
48. Ohtsu Y., Sasamura H., Shibata T. et al. The novel gluconeogenesis inhibitor FR225654 that originates from Phoma sp. No.00144. J Antibiot 2005; 58: 7: 452-455.
49. Gibbs J.B. Ras C-terminal processing enzymes - new drug targets? Cell 1991; 65: 1: 1-4.
50. Bos J.L. Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 17: 4682-4689.
51. Barbacid M. Ras genes. Ann Rev Biochem 1987; 56: 779-827.
52. Iwasaki S., Omura S. Search for protein farnesyltransferase inhibitors of microbial origin: our strategy and results as well as the results obtained by other groups. J Antibiot 2007; 60: 1: 1-12.
53. Ayral-Kaloustian S., Salaski E.J. Protein farnesyltransferase inhibitors. Curr Med Chem 2002; 9: 10: 1003-1032.
54. Halushka P., Dy G.K., Adjei A.A. Farnesyltransferase inhibitors as anticancer agents. Eur J Cancer 2002; 38: 13: 1685-1700.
55. Magi S., Shitara T.,Takemoto Y. et al. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyltransferase. J Antibiot 2013; 66: 3: 165-170.
56. Arai Y., Iinuma H., Ikeda Y. et al. Migracins A and B, new inhibitors of cancer cell migration, produced by Streptomyces sp. J Antibiot 2013; 66: 4: 225-230.
57. Okumura Y., Matsui T., Ogawa K. et al. Biochemical properties and primary structure of elastase inhibitor AFUEI from Aspergillusfumigatus. J Med Microbiol 2008; 57: 7: 803-808.
Рецензия
Для цитирования:
Орлова Т.И., Булгакова В.Г., Полин А.Н. Гепатопротекторные эффекты экстрактов и полисахаридов морских водорослей. Антибиотики и Химиотерапия. 2014;59(3-4):38-44.
For citation:
Orlova T.I., Bulgakova V.G., Polin A.N. Microbial Secondary Metabolites as Potential Reserve of Pharmaceuticals. Antibiot Khimioter = Antibiotics and Chemotherapy. 2014;59(3-4):38-44. (In Russ.)