Preview

Antibiot Khimioter = Antibiotics and Chemotherapy

Advanced search

Microbial Secondary Metabolites as Potential Reserve of Pharmaceuticals

Abstract

The major characteristics of new bioactive microbial secondary metabolites are summarized in the review. A wide range of new molecular targets are implicated in discovery of new nonantibiotic compounds with some other pharmacological activities (noninfectious diseases). Microorganisms represent fascinating resources due to their production of novel products with broad spectra of bioactivities.

About the Authors

T. I. Orlova
M.V. Lomonosov Moscow State University
Russian Federation


V. G. Bulgakova
M.V. Lomonosov Moscow State University
Russian Federation


A. N. Polin
M.V. Lomonosov Moscow State University
Russian Federation


References

1. Berdy J. Bioactive microbial metabolites. Personal view. J Antibiot 2005; 58: 1: 1-26.

2. Aminov R.I. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 2009; 11: 12: 2970-2988.

3. Yamaguchi A., Komori T., Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocrine Rev 2000; 21: 4: 393-411.

4. Herath K.B., Jayasuriya H., Ondeyka J.G. et al. Isolation and structures of novel fungal metabolites as chemokine receptor (CCR2) antagonists. J Antibiot 2005; 58: 4: 686-694.

5. Schreiber D., Jung M., Sandjo L.P. et al. 3’-Demethyldihydromaldoxin and dihydromaldoxin, two anti-inflammatory diaryl ethers from a Steganospora species. J Antibiot 2012; 65: 9: 473-477.

6. Rodan G.A., Martin T.J. Therapeutic approaches to bone diseases. Science 2000; 289: 1508-1514.

7. Wu X., Ding S., Ding Q. et al. A small molecule with osteogenesis-inducing activity in multipotent mesenchmal progenitor cells. J Am Chem Soc 2002; 124: 49: 14520-14521.

8. Sakamoto S., Kojima F., Igarashi M. et al. Decalpenic acid, a novel small molecule from Penicillium verruculosum CR37010, induces early osteoblastic markers in pluripotent mesenchymal cells. J Antibiot 2010; 63: 12: 703-708.

9. Fucuda T., Uchida R., Ohte S. et al. Trichocyalides A and B, new inhibitors of alkaline phosphatase activity in bone morphogenetic protein-stimulated myoblasts, prodused by Trichoderma sp. FKI-5513. J Antibiot 2012; 65: 11: 565-569.

10. Harada H., Nakata T., Hirota-Takahata Y. et al. F-16438s, novel binding inhibitors of CD44 and hyaluronic acid.I.Establishment of an assay method and biological activity. J Antibiot 2006; 59: 12: 770-776.

11. Hirota-Takahata Y., Harada H., Tanaka I. et al. F-16438s, novel binding inhibitors of CD44 and hyaluronic acid. II.Producing organism, fermentation, isolation, physico-chemical properties and structural elucidation. J Antibiot 2006; 59: 12: 777-784.

12. Hirota-Takahata Y., Harada H., Tanaka I. et al. F-19848A, a novel inhibitor of hyaluronic acid binding to cellular receptor CD44. J Antibiot 2007; 60: 10: 633-639.

13. Hosoe T., Sakai H., Ichikawa M. et al. Lepidepyrone, a new γ-pyrone derivative, from Neolentinus lepideus, inhibits hyaluronidase. J Antibiot 2007; 60: 6: 388-390.

14. Harada H., Takahashi M. CD44-Dependent intracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem 2007; 282: 8: 5597-5607.

15. Culty M., Nguyen H.A. Underhill C.B. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol 1992; 116: 4: 1055-1062.

16. Ohno H., Yoshida M., Takahashi Y., Omura S. Improvement of the productivity of elasnin, a specific elastase inhibitor by Streptomyces noboritoensis KM-2753. J Antibiot 1980; 33: 5: 474-479.

17. Wiedow O., Schroder J.M., Gregory H. et al. Elafin: an elastase-specific inhibitor of human skin. Purification, characterization and complete amino acid sequence. J Biol Chem 1990; 265: 25: 14791-14795.

18. Umesawa H., Aoyagi T., Okura A. et al. Letter: elastatinal, a new elastase inhibitor produced by actinomycetes. J Antibiot 1973; 26: 12: 787-789.

19. Okumura Y., Ogawa K., Nikai T. Elastase and elastase inhibitor from Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger. J Med Microbiol 2004; 53: 5: 351-354.

20. Yang S.-W., Mierzwa R., Terracciano J. et al. Sch 213766, a novel chemokine receptor CCR-5 inhibitor from Chaetomium globosum. J Antibiot 2007; 60: 8: 524-528.

21. Pillay D. Current patterns in the epidemiology of primary HIV drug resistance in North America and Europe. Antiviral Therapy 2004; 9: 5: 695-702.

22. Yang S.-W., Mierzwa R., Terracciano J. et al. Chemokine receptor CCR-

23. inhibitors produced by Chaetomium globosum. J Nat Prod 2006; 69: 7: 1025-1028.

24. Segeth M.P., Bonnefoy A., Bronstrup M. et al. Coniosetin, a novel tetramic acid antibiotic from Coniochaeta ellipsoidea DSM 13856. J Antibiot 2003; 56: 2: 114-122.

25. Liu D.-Z., Wang F., Yang L.-M. et al. A new cadinane sesquiterpene with significant anti-HIV-1 activity from the cultures of the basidiomycete Tyromyces chironeus. J Antibiot 2007; 60: 5: 332-334.

26. Takahashi A., Inokoshi J., Tsunoda M. et al. Actinohivin: specific amino acid residues essential for anti-HIV activity. J Antibiot 2010; 63: 11: 661-665.

27. Hoorelbeke B., Huskens D, Ferir G. et al. Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrob Agents Chemother 2010; 54: 8: 3287-3301.

28. Tanaka H., Chiba H., Inokoshi J. et al. Mechanism by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci USA 2009; 106: 37: 15633-15638.

29. Takahashi A., Inokoshi J., Hachiya A. et al. The high-mannose-type glycan binding lectin actinohivin: dimerization greatly improves anti-HIV activity. J Antibiot 2011; 64: 8: 551-557.

30. Shiomi K., Matsui R., Isozaki M. et al. Fungal phenalenones inhibit HIV-1 integrase. J Antibiot 2005; 58: 1: 65-68.

31. Rochfort S., Ford J., Ovenden S. et al. A novel aspochalasin with HIV 1 integrase inhibitory activity from Aspergillus flavipes. J Antibiot 2005; 58: 4: 279-283.

32. Liu X., Li J., Ni S. et al. A pair of sulfur-containing geldanamycin analogs,19-S-methylgeldanamycin and 4,5-dihydro-19-S-methylgeldanamycin, from Streptomyces hygroscopicus 17997. J Antibiot 2011; 64: 7: 519-522.

33. Li Y.-H., Lu Q.-N., Wang H.-Q. Geldanamycin, a ligand of heat shock protein 90, inhibits herpes simplex virus type 2 replication both in vitro and in vivo. J Antibiot 2011; 64: 12; 65: 10: 509-512.

34. Shan G.-z., Peng Z.-g., Li Y.-h. et al. A novel class of geldanamycin derivatives as HCV replication inhibitors targeting on Hsp90: synthesis, structure-activity relationships and anti-HCV activity in GS4,3 replicon cells. J Antibiot 2011; 64: 12: 177-182.

35. Yamagishi Y., Ueno M., Ueno C. et al. Anti-herpes virus activity of polyether antibiotic CP-44161 in vivo. J Antibiot 2009; 62: 2: 95-98.

36. Yamagishi Y., Ueno C., Kato A. et al. Discovery of anti-varicella zoster virus activity of polyether antibiotic CP-44161. J Antibiot 2009; 62: 2: 89-93. Nishida F., Mory Y., Isobe S. et al. Structures of deacetyl glykenins - A,B, and C, glycosidic antibiotics from Basidiomycetes sp. Tetrahedron Lett 1988; 29: 5287-5290.

37. Alexander B., Daniel J.R., Stephan B. et al. L-Ascorbic acid 6-hexadecanoate, a potent hyaluronidase inhibitor. J Biol Chem 2004; 279: 44: 45990-45997.

38. Matsuda D., Namatame I., Ohshiro T. et al. Anti-atherosclerotic activity of triacsin C, an acyl-CoA synthetase inhibitor. J Antibiot 2008; 61: 5: 318-321.

39. Namatame I., Tomoda H., Arai H. et al. Complete inhibition of mouse macrophage-derived foam cell formation by triacsin C. J Biochem 1999; 125: 2: 319-327.

40. Omura S., Tomoda H., Xu Q.M. et al. Triacsins, new inhibitors of acyl-CoA synthetase produced by Streptomyces sp. J Antibiot 1986; 39: 9: 1211-1218.

41. Yamazaki H., Kobayashi K., Matsuda D. et al. Pentacecilides, new inhibitors of lipid droplet formation in mouse macrophages, produced by Penicillium cecidicola. J Antibiot 2009; 62: 4: 195-200.

42. Ohshiro T., Matsuda D.,Kazuhiro T. et al. New verticilides, inhibitors of acyl-CoA: cholesterol acyltransferase, produced by Verticillium sp.FKI 2679. J Antibiot 2012; 65: 5: 255-262.

43. Ohshiro T., Rudel L.L., Omura S., Tomoda H. Selectivity of microbial acyl-CoA: cholesterol acyltransferase inhibitors toward isozymes J Antibiot 2007; 60: 4: 43-51.

44. Sato B., Nakajima H., Fujita T. et al. FR177391, a new anti-hyperlipidemic agent from Serratia. I. Taxonomy, fermentation, isolation, physico-chemical properties, structure elucidation and biological activities. J Antibiot 2005; 58: 10: 634-639.

45. Inami M., Kawamura I., Tsujimoto S. et al. FR177391, a new antihyperlipidemic agent from Serratia. II. Pharmacological activity of FR177391. J Antibiot 2005; 58: 10: 640-647.

46. Kobayashi M., Sato K., Yoshimura S. et al. FR177391, a new anti-hyperlipidemic agent from Serratia. III. Microbial conversion of FR177391 and synthesis of FR177 derivatives for its target protein screening by chemical genetic approaches. J Antibiot 2005; 58: 10: 648-653.

47. Yamaoka M., Sato K., Kobayashi M. et al. FR177391, a new anti-hyperlipidemic agent from Serratia. IV. Target identification and validation by chemical genetic approaches. J Antibiot 2005; 58: 10: 654-652.

48. Ohtsu Y., Sasamura H., Shibata T. et al. The novel gluconeogenesis inhibitor FR225654 that originates from Phoma sp. No.00144. J Antibiot 2005; 58: 7: 452-455.

49. Gibbs J.B. Ras C-terminal processing enzymes - new drug targets? Cell 1991; 65: 1: 1-4.

50. Bos J.L. Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 17: 4682-4689.

51. Barbacid M. Ras genes. Ann Rev Biochem 1987; 56: 779-827.

52. Iwasaki S., Omura S. Search for protein farnesyltransferase inhibitors of microbial origin: our strategy and results as well as the results obtained by other groups. J Antibiot 2007; 60: 1: 1-12.

53. Ayral-Kaloustian S., Salaski E.J. Protein farnesyltransferase inhibitors. Curr Med Chem 2002; 9: 10: 1003-1032.

54. Halushka P., Dy G.K., Adjei A.A. Farnesyltransferase inhibitors as anticancer agents. Eur J Cancer 2002; 38: 13: 1685-1700.

55. Magi S., Shitara T.,Takemoto Y. et al. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyltransferase. J Antibiot 2013; 66: 3: 165-170.

56. Arai Y., Iinuma H., Ikeda Y. et al. Migracins A and B, new inhibitors of cancer cell migration, produced by Streptomyces sp. J Antibiot 2013; 66: 4: 225-230.

57. Okumura Y., Matsui T., Ogawa K. et al. Biochemical properties and primary structure of elastase inhibitor AFUEI from Aspergillusfumigatus. J Med Microbiol 2008; 57: 7: 803-808.


Review

For citations:


Orlova T.I., Bulgakova V.G., Polin A.N. Microbial Secondary Metabolites as Potential Reserve of Pharmaceuticals. Antibiot Khimioter = Antibiotics and Chemotherapy. 2014;59(3-4):38-44. (In Russ.)

Views: 292


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0235-2990 (Print)